The Enteric (Gut) Microbiome Modulates Mitochondrial Function

Richard E. Frye, M.D., Ph.D. Child and Behavioral Neurologist Arkansas Children's Hospital University of Arkansas for Medical Sciences

Talking Points

The enteric (gut) microbiome has an important influence in on health and disease states in humans.

The enteric microbiome influences the human host using chemical mediators, some of which can directly effect mitochondrial function

Short chain fatty acids produced by gut bacteria not only modulate mitochondrial function and cellular regulatory pathways, but can also be used as mitochondrial fuels.

THE HUMAN

Bacteria, fungi, and viruses outnumber human cells in the body by a factor of 10 to one. The microbes synthesize key nutrients, fend off pathogens and impact everything from weight gain to perhaps even brain development. The Human Microbiome Project is doing a census of the microbes and sequencing the genomes of many. The total body count is not in but it's believed over 1,000 different species live in and on the body.

25 SPECIES

in the stomach include: -----

Helicobacter pylori Streptococcus thermophilus

500-1,000 SPECIES

in the intestines include: -----

- Lactobacillus casei
 Lactobacillus reuteri
 Lactobacillus gasseri
 Escherichia coli
 Bacteroides fragilis
 Bacteroides thetaiotaomicron
- Lactobacillus rhamnosus
- Clostridium difficile

MICROBIOME 600+

0

in the mouth, pharynx and respiratory system include:

Streptococcus viridans
Neisseria sicca
Candida albicans
Streptococcus salivarius

1,000 SPECIES

in the skin include:

Pityrosporum ovale
Staphylococcus epidermidis
Corynebacterium jeikeium
Trichosporon
Staphylococcus haemolyticus

60 SPECIES

in the urogenital tract include:

Ureaplasma parvum Corynebacterium aurimucosum

Bacteria use a complex communication network to thrive in an environment

The microbiota induces host immune tolerance

Segmented Filamoentous Bacteria Gut assocatied lymphoid tissue

John Slattery^{1,2}, Derrick F. MacFabe³ and Richard E. Frye^{1,2}

 Table 1. Microbiome disruption by condition summary.

 Table 1. Microbiome disruption by condition summary.

CONDITION	RELEVANT FINDINGS	CONDITION	RELEVANT FINDINGS
Prematurity	↑ Proteobacteria ↓ Microbial diversity	Allergies	\downarrow Species diversity
Necrotizing enterocolitis	Blooms of <i>Proteobacteria</i> prior to disease onset	Asthma	No clear pattern
		Inflammatory bowel	Data is sparse, no consistent patter
Sepsis	Altered microbiota structure and composition prior to disease onset has been reported, but specific microbiota reported is inconsistent across studies	Type I diabetes	 ↑ Bacteroidetes:Firmicutes ratios, ↑ Clostridia species ↓ Butyrate-producing bacteria ↓ Bacterial diversity ↓ Community stability Alterations in the microbiome seem to precede disease onset
Colic	Decreased microbial diversity and increased anaerobic bacteria		
Malnutrition	Anaerobic depletion, early dysbiosis, and intestinal pathogenic overabun- dance with decreased bacterial diversity	Type II diabetes and obesity	<i>↑ Firmicutes:Bacteroidetes</i> ratio ↑ SCFAs
		Autism spectrum disorder	↑ <i>Clostridial</i> species
Eczema	Early colonization with opportunistic species may be important in disease initiation		↑ <i>Suttetrella</i> and <i>Desulfovibrio</i> species

Enteric Ecosystem Disruption in Autism Spectrum Disorder: Can the Microbiota and Macrobiota be Restored? John Slattery^{a,b}, Derrick F. MacFabe^c, Stephen G. Kahler^{a,d} and Richard E. Frye^{a,b}

Potential Trigger	Possible Remediation Plan	
Mitochondrial Toxins	Avoid and Eliminate [see 4a and 4b] If certain medications can't be avoided a mito- chondrial cocktail such as carnitine, Co-Q10, B Vitamins, Creatine Monohydrate, and anti- oxidants [49]	
Antibiotics (Abx)	Provide Pre/Probiotics with Abx and/or NAC. Supplement with carnitine if using β-Lactams	
Acetaminophen	Avoid and Eliminate. Pre-treat with NAC if unavoidable.	
Poor Folate Metabo- lism and/or Absorp- tion	Treat with reduced folates (e.g. folinic acid) and avoid folic acid	
Bovine Milk Products	Eliminate or Minimize Use	
Maternal Infection	Minimize exposures and medications that could further complicate development	
Maternal Autoim- mune Reaction	Pre/Probiotic Supplementation and other im- mune supporting agents	
Psychological Stress Management	Meditation, Yoga, and/or other relaxation techniques to mothers during pregnancy.	

Potential Trigger	Possible Remediation Plan	
Pre/postnatal Toxins	Avoid air pollution, solvents, polychlorinated biphenyls (PCBs), phthalates, bisphenol A, and mercury exposure as well as cigarette smoking, illicit drug use, and alcohol exposure	
Poor Diet	Eat foods high in microbiota accessible carbo- hydrates along with fruits and vegetables. FMTs in the future may be warranted	
Premature Weaning and/or Formula feed- ing	Breastfeed for at least 6 months and/or supply breast milk from donors over formula feeding or pasteurized milk	
Vitamin D and/or Tryptophan Metabo- lism Deficiency or Disorders	Supplement with Tryptophan and Vitamin D	
Poor Maternal Sleep Hygiene	Introduction of Sleep Protocols to decrease sleep associated complications	
C-Sections	Avoid elective C-Sections and reserve for emergency situations only	
Helminths	Re-introduction of helminthes into the intesti- nal ecosystem is necessary to re-establish the balance of the ecosystem	

Autism Spectrum Disorder

and the

Microbiome

Propionic Acid

Model of Autism:

Animal Models

Fatty Acid G coupled protein receptor activation Passive/active uptake to gut and CNS Neurotransmitter synthesis (catecholamine, 5HT) and (monocarboxylate transporters release (fatty acids, ketones) Increased intracellular calcium Neuroinflammation/neurodevelopment Gut motility and Cortical dysplasia inflammation Malabsorption Gap Junction closure Tight/Gap Junction Electrotonic coupling, impairment barrier Neuronal Migration dysfunction Impaired synaptic pruning (immune and enteric Short Chain Fatty Acid nervous system effects) **Bacterial Fermentation** Products Altered gene expression (Histone deacetylase inhibition) CREB activation (memory) Epigenetic effects Mitochondria (More pronounced at Altered TCA cycle Autism-like behavior critical neurodevelopmental Phospholipid alterations Repetitive, Antisocial, Object fixation, Windows) Oxidative stress Anxiety-like behavior, Perseveration

Seizure disorder, Dystonia, Tics,

Sensory processing

Reduced glutathione, Carnitine deficiency

Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

Derrick F. MacFabe, MD*

Neuropathology Quantification

Propionate increases GFAP, Marker of Reactive Astrocytes and immunoreactivity in hippocampus

CD68 marker of Microglia

Control (PBS)

PPA increases activated microglia (neuroinflammation)

TREATMENT

PBS

Interleukin 6

Nitrotyrosine Immunoreactivity, a measure of oxidative stress

PBS Vehicle

High Dose PPA

PPA causes increase anti Nitro-tyrosine immunoreactivity in hippocampal formation, a measure of oxidative stress

Developmental delay in pups

Developmental milestones are delayed in pups prenatally exposed to PPA and LPS (ie. pinna detachment, incisor eruption). (PPA similar to valproic acid- mitochondrial function/gene expression)

Acoustic startle response: Prenatal PPA and LPS produce hyper-sensitivity to stimulus

Other anxiety-like behaviour also present in PPA and LPS animals.

Propionic Acid

Model of Autism:

Parallels of Children with Autism

Citation: Transl Psychiatry (2013) 3, e220; doi:10.1038/tp.2012.143 © 2013 Macmillan Publishers Limited All rights reserved 2158-3188/13

www.nature.com/tp

Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder

RE Frye¹, S Melnyk¹ and DF MacFabe²

- 213 ASD patients screened with acyl-carnitine biomarkers
- 74 (35%) with >=3 fasting acyl-carnitine elevations
- Acyl-carnitine abnormalities were confirmed in 48%
- Corrected prevalence of 17% of ASD children screened.

total GSH

ASD/MD ASD/NoMD

TREATMENT

OPEN O ACCESS Freely available online

Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

Brent L. Williams¹, Mady Hornig¹, Timothy Buie², Margaret L. Bauman³, Myunghee Cho Paik⁴, Ivan Wick¹, Ashlee Bennett¹, Omar Jabado¹, David L. Hirschberg¹, W. Ian Lipkin^{1*}

1 Center for Infection and Immunity, Columbia University, New York, New York, United States of America, 2 Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 3 Department of Neurology, Harvard Medical School and Departments of Neurology and Pediatrics and Learning and Developmental Disabilities Evaluation and Rehabilitation Services (LADDERS), Massachusetts General Hospital, Boston, Massachusetts, United States of America, 4 Department of Biostatistics, Columbia University, Mailman School of Public Health, New York, New York, United States of America

TREATMENT

OPEN OACCESS Freely available online

Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

Brent L. Williams¹, Mady Hornig¹, Timothy Buie², Margaret L. Bauman³, Myunghee Cho Paik⁴, Ivan Wick¹, Ashlee Bennett¹, Omar Jabado¹, David L. Hirschberg¹, W. Ian Lipkin^{1*}

GI-After = GI Symptoms started after the onset of Autism symptoms

GI-Before/Same = GI Symptoms started before or at the same time as Autism symptoms

Early Immune Activation

Model of Autism:

Animal Model and Probiotic Treatment

Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders

Elaine Y. Hsiao,^{1,2,*} Sara W. McBride,¹ Sophia Hsien,¹ Gil Sharon,¹ Embriette R. Hyde,³ Tyler McCue,³ Julian A. Codelli,² Janet Chow,¹ Sarah E. Reisman,² Joseph F. Petrosino,³ Paul H. Patterson,^{1,4,*} and Sarkis K. Mazmanian^{1,4,*} ¹Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA ²Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA ³Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA ⁴These authors contributed equally to this work *Correspondence: ehsiao@caltech.edu (E.Y.H.), php@caltech.edu (P.H.P.), sarkis@caltech.edu (S.K.M.) http://dx.doi.org/10.1016/j.cell.2013.11.024

Motor deficits, cognitive and behavioral impairment, psychiatric illness

Microbiota Transfer Therapy (MTT)

Kang et al. Microbiome (2017) 5:10 DOI 10.1186/s40168-016-0225-7

Microbiome

RESEARCH

CrossMark

Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study

Dae-Wook Kang^{1†}, James B. Adams^{2†}, Ann C. Gregory^{3,15†}, Thomas Borody⁴, Lauren Chittick^{5,15}, Alessio Fasano⁶, Alexander Khoruts^{7,8,9}, Elizabeth Geis², Juan Maldonado¹, Sharon McDonough-Means¹⁰, Elena L. Pollard², Simon Roux^{5,15}, Michael J. Sadowsky^{8,11}, Karen Schwarzberg Lipson¹², Matthew B. Sullivan^{3,5,15,16*}, J. Gregory Caporaso^{12,13*} and Rosa Krajmalnik-Brown^{1,14*}

Microbiota Transfer Therapy (MTT) Vancomycin: 40 mg/kg by mouth per day, divided into three doses, 0 not to exceed 2 mg per day Day 1-14 Vancomycin Prilosec: 20 mg by mouth daily Day 12-74 Prilosec MoviPrep: Standard kit was used with half the dosage being 0 🕁 Day 15 administered at approximately 10 am and the other half at 4 pm on MoviPrep day fifteen only, to cleanse the bowel of vancomycin and feces. The dosage varies proportionately based on the body mass. ₩ Day 16-17, initial* admin. High oral SHGM Day 18-74, maintenance*** admin. Initial oral route: The dosage for the first 2 days (Day 16 and 17 0 Low oral SHGM only), 3 times a day for a total daily dose of 2.5 x 1012 cells/day or ★Day 16, initial^{**} admin. High rectal SHGM Initial rectal route: 2.5 x 10¹² cells, 1 time a day (Day 16 only) Day 25-74, maintenance*** admin. Low oral SHGM Maintenance dose: 2.5 x 109 cells, 1x/day by mouth. 0 WEEK Stool Swab GSRS/PGI-R CARS/SRS/ABC Vineland

Fig. 1 Study design timeline. The trial consists of 10-week Microbiota Transfer Therapy (MTT) and 8-week follow-up observation period after treatment stopped. Schematic timeline represents a series of treatments that were performed during MTT (*top*) and frequencies of sample collection and GI/behavior assessments (*bottom*; neurotypical and ASD group colored in *green* and *purple*, respectively)

