NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Metabolism, Infection and Immunity in Mitochondrial Disease

Peter J. McGuire MS, MD Head, MINI Section National Human Genome Research Institute 5 October 2018

No conflicts of interest to declare

Outline

What is the immune system and why is it important?

Infection and mitochondrial disease

Immune function in mitochondrial disease

Why is the immune system important?

• Protects us against

The immune system has multiple lines of defense

Copyright © 2006, 2003 by Mosby, Inc. an affiliate of Elsevier Inc.

The immune system is composed of organs and cells Organs Cells White blood cells

The immune system has many different type of cells

- Body learns to defend itself by:
 - Natural infection
 - Vaccination

Why study the immune system immune and mitochondrial disease (MD)?

- Because:
 - Infection is bad for patients with mitochondrial disease
- Our questions:
 - What happens to patients with MD during infection?
 - Does having MD affect immune function?

- Point #1: Infection increases energy requirements
 - For every 1° C of fever, metabolic rate can increase 10% or more
 - Problem: need more calories, but you don't feel like eating; Vability to generate energy

• **Point #2:** Infection can lead to an increase in tissue lactate production

• **Point #3:** Immune reactions can damage mitochondria

• **Point #3:** Immune reactions can damage mitochondria

Tarasenko et al (submitted)

• **Point #4:** The immune response may be part of the problem - cytokines

Cytokines produced as part of the immune response inhibit mitochondrial metabolism in human liver cells.

• **Point #5:** What do we see clinically with infection?

The need for translational research in MD

Metabolic decompensation

- In extremis (lifethreatening)
 - Bioenergetic failure
 - Lactic acidosis
 - Organ failure (e.g. liver failure)
 - Encephalopathy
 - Stroke
 - Sequelae
- Extensive ICU care

Clinical question: How did we arrive at this point?

- 1) Are patients with MD immunodeficient?
- 2) What is the role of inflammation in MD pathophysiology?

Immune function in MD

- Since infection can be very serious...
 - How well does the immune system function in patients with MD?

Fatal Neonatal-Onset Mitochondrial Respiratory Chain Disease with T Cell Immunodeficiency

JANINE REICHENBACH, RALF SCHUBERT, RITA HORVÀTH, JENS PETERSEN, NANCY FÜTTERER, ELISABETH MALLE, ANDREAS STUMPF, BORIS R. GEBHARDT, ULRIKE KOEHL, BURKHART SCHRAVEN, AND STEFAN ZIELEN

- mtDNA depletion syndrome
- ↓Complex II+III and IV in muscle
- Recurrent infections, RIP 18 months with septicemia
- Hypogammaglobulinemia by 15 months
- ↓Memory T-cells, CD8+ T-cells, NK cells
- ↓T-cell response to II-2

Clinical Communications

Predisposition to infection and SIRS in mitochondrial disorders: 8 years' experience in an academic center Melissa A. Walker, MD, PhD^a, Nancy Slate, MS^b, Alexandra Alejos, BS^c, Stefano Volpi, MD^d, Rajashri S. Iyengar, MD, MPH^c, David Sweetser, MD, PhD^e, Katherine B. Sims, MD^{a,*}, and Jolan E. Walter, MD, PhD^{c,*}

Clinical Implications

- Mitochondrial disorders are multisystem diseases that, although not previously described, may include predisposition to infection and immunodysfunction.
- Immune phenotyping of these patients may be useful to identify individuals who require immunoglobulin replacement and/or antibiotic prophylaxis to decrease hospitalization and improve outcomes.

Immune function and MD

- What do we know? Not much, but...
 - Immune cells don't like high levels of toxins

 Mitochondrial RC deficiencies can also be present in immune organs and cells

Immune function and MD: toxins (lactate)

Mitochondrial dysfunction in immune cells

It all started with a clinical case...

- 15 year old male
- Complex III deficiency
- Multisystem disease
 - Neurologic
 - Musculoskeletal
 - Endocrine
 - Immunologic
 - Multiple infections
 - Hypogammaglobulinemia
 - Loss of pneumococcal titers
- Research exome pending

McGuire et al. (unpublished data)

Clinical features of MD

- Multisystem
- An energy organs
- mtDNA and nDNA inheritance
- Most common IEM
- Lactic acidosis
- Complications during/after decompensation (Edmonds et al, 2002)
- Pathophysiology: energy deficiency, ROS

Recurrent infection is common in patients with MD

The University of Texas Health Science Center at Houston

Immunodeficiency screen for MD patients

Patients with MD may have poor immune memory

(protective)

The University of Texas Health Science Center at Houston

Immunization Recommendations for Children With Metabolic Disorders: More Data Would Help

Michael T. Brady, MD

Department of Pediatrics, Columbus Children's Hospital, Columbus, Ohio

Biochemical changes that are present in children with inborn errors of metabolism may affect their immune response system and not only increase risk for infection but also diminish their ability to develop protective immunity after immunization. Understanding the immunogenicity and ability of vaccines to provide protective immunity in each of the specific metabolic disorders will be critical to understanding the child's risk/benefit equation. Immunogenicity of vaccines and protection have not been well characterized in children with most metabolic disorders. A recent review⁵ of immune deficien-

Figure 1. Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger—United States, 2018.

(FOR THOSE WHO FALL BEHIND OR START LATE, SEE THE CATCH-UP SCHEDULE [FIGURE 2]).

These recommendations must be read with the footnotes that follow. For those who fall behind or start late, provide catch-up vaccination at the earliest opportunity as indicated by the green bars in Figure 1. To determine minimum intervals between doses, see the catch-up schedule (Figure 2). School entry and adolescent vaccine age groups are shaded in gray.

Vaccine	Birth	1 mo	2 mos	4 mos	6 mos	9 mos	12 mos	15 mos	18 mos	19-23 mos	2-3 yrs	4-6 yrs	7-10 yrs	11-12 yrs	13-15 yrs	16 yrs	17-18 yrs
Hepatitis B ^r (HepB)	1 ^e dose	← _2 nd	dose>		<		- 3 ^{el} dose-										
Rotavirus ² (RV) RV1 (2-dose series); RV5 (3-dose series)			1 st dose	2 nd dose	See footnote 2												
Diphtheria, tetanus, & acellular pertussis² (DTaP: <7 yrs)			1 st dose	2 nd dose	3≝ dose			≪····· 4 [±] (iose >			5 th dose					
Haamophilus influenzae type b' (Hib)			1 st dose	2 nd dose	See footnote 4		←_3 rd or 4 See for	tnote 4		1							
Pneumococcal conjugate ⁶ (PCV13)			1 st dose	2 nd dose	3 ^d dose		← 4 th	dose 🔶		1	1						
Inactivated poliovirus ⁶ (IPV: <18 yrs)			1#dose	2 nd dose	-				→			4 th dose					
Influenza ⁷ (IV)							Ar	nual vaccina	stion (IIV) 1 (or 2 doses				Ar	nual vaccina 1 dose o	ation (IIV) mly	
Measles, mumps, rubella [#] (MMR)					See foo	tnote 8	← 1 [#] (iose →				2 nd dose					
Varicella [#] (VAR)							<u>←</u> 1±0	iose >		1	1	2 nd dose					
Hepatitis A ¹⁰ (HepA)							<mark>≺ 2</mark> -	dose series, S	see footnote	10	-						
Meningococcal ⁷¹ (MenACWY-D ≥9 mos; MenACWY-CRM ≥2 mos)						See foo	tnote 11							1ªdose		2 nd dose	
Tetanus, diphtheria, & acellular pertussis™ (Tdap:≥7 yrs)														Tdap			
Human papillomavirus ¹⁴ (HPV)														See footnote 14			
Meningococcal B ¹²															See foot	note 12	
Pneumococcal polysaccharide ^s (PPSV23)													5	iee footnote	5		
Range of recommended ages for all children		Range for cat	of recomm ch-up imm	ended ages inization		Rang	e of recomm rtain high-r	nended age isk groups	5	Ran grou	ge of recom ups that may vidual clinic	mended ag y receive va al decision	es for non-l ccine, subje making	high-risk eet to		No recom	mendation

NOTE: The above recommendations must be read along with the footnotes of this schedule.

Vaccination Rate

Kruk et al (unpublished data)

MMR seropositivity

Kruk et al (unpublished data)

Varicella seropositivity

Kruk et al (unpublished data)

Hypothesis: Bioenergetic deficiency in MD may extend to immune cells leading to immunodeficiency.

The University of Texas Health Science Center at Houston

How many patients have problems with infection?

How many patients are on IVIg?

The mystery of IVIg

lVlg

•intravenous immune globulin

- aka "antibodies"
- produced from human plasma
- Immune mediated conditions
- Immunodeficiency
- •Other effects? Benefits?
- •Does the pathology of MD have an immune component?

Hypothesis: Bioenergetic deficiency in MD may extend to immune cells leading to immunodeficiency.

- 8 y/o male with MD
- Received PICC line 2
 weeks prior for access
- Presented with fever and hospitalized

The University of Texas Health Science Center at Houston

#UTHealth

Hypothesis: Bioenergetic deficiency in MD may extend to immune cells leading to immunodeficiency.

- 8 y/o male with MD
- Received PICC line 2
 weeks prior for access
- Presented with fever and hospitalized

The University of Texas Health Science Center at Houston

Translational model: TCox10^{-/-}

mitochondrion

Complex IV

COX10

- Maturation of cytochrome C oxidase (CIV)
- Present in lymphocytes •
- Deficiency: MD or Leigh phenotype ٠
- KO in T-cells only

Complex I

Mice are generally healthy

(membranes of cristae) PROCESS: ELECTRON TRANSPORT CHAIN Intermembrane space Complex Complex Membrane of cristae Complex Complex ~ II Mitochondrial matrix 2e" + 2H+ + 1/2 02 NADH FADH₂ FAD NAD

Complex III

Complex II

Tarasenko et al, Cell Metab, 2017

Compromised respiratory chain in TCox10^{-/-}**T-cells**

TCox10^{-/-} peripheral lymphocyte counts

Vaccination response is impaired in TCox^{-/-}

Days

Clinical correlate: loss of vaccine titers

Tarasenko et al, Cell Metab, 2017

Influenza viral clearance is impaired in TCox10^{-/-}

Summary

- The immune system is important for vaccination and protection against infection
- Infection may be detrimental to patients with MD
- Subsets of patients with MD may have immune dysfunction
 - Toxicity
 - Metabolic dysfunction

Longitudinal natural history study of immunity in MD

The NIH MINI Study: <u>Metabolism</u>, <u>Infection</u>, and <u>Immunity</u> in Inborn Errors of Metabolism (ΝCT01780168)

Goal:

- Mitigate risk in patients with MD
 - Identify immune susceptibilities and risks in patients with MD
 - Characterize organ systems which may be susceptible to dysfunction/damage during infection in MD

OIMMUNITY

NFLAMMATION

Travel, lodging and meals provided

Children's Inn at NIH

The immune phenotype in patients with MD (NIH MINI Study)

Primary immunodeficiency Allergic/Inflammatory diseases

Immune dysfunction

Stress-induced immune dysfunction

Risk of decompensation

MINI Study contact information

Principal Investigator

Peter J. McGuire MS, MD

Staff Clinician

Eliza Gordon-Lipkin MD, PhD

Study Coordinator

Shannon Kruk, BSN, RN

Telephone

301-451-9145

Website

http://www.genome.gov/mini

Email

ministudy@mail.nih.gov

