Drug-Induced Mitochondrial Dysfunction: An Emerging Model for Idiosyncratic Drug Toxicity

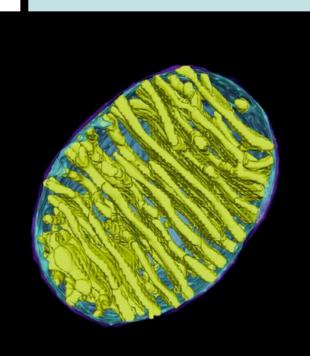
James A. Dykens Pfizer Drug Safety Research & Development, Sandwich, England

Drug-Induced Mitochondrial Toxicity: A New Model of Idiosyncratic Adverse Drug Responses

Overview

- Mitochondrial failure
 - Complex organelle can fail in many ways.
 - $\Delta \Psi$ bioaccumulates some drugs
- Drugs with Mitochondrial Liabilities
 - OXPHOS Inhibitors & Uncouplers = acute liabilities
 - Inhibitors of Expression/Replication = chronic treatments
- How Was it NOT Discovered??
- New Preclinical Screens
 - 1. Mitochondrial Respiration in 96-well Plates
 - 2. Metabolic Profiling
 - 3. Identifying Site of Action
 - 6. Cell Models to Facilitate Detection of Mitochondrial Liabilities
- New Model of Idiosyncratic Toxicity

Some of the 44 Drugs Withdrawn Since 1960


Drug name	Withdrawn	Remarks
thalidomide	1960s	teratogenicity
lysergic acid diethylamide (LSD)	1960s	abused
diethylstilbestrol phenformin and buformin	1970s <u>1978</u>	teratogenicity lactic acidosis
ticrynafen	1982	hepatitis
zimelidine	1983	Guillain-Barré syndrome
methaqualone	1984	addiction and overdose
triazolam	1991	UK - psychiatric
fenfluramine	1997	hepatotoxicity
dexfenfluramine	1997	hepatotoxicity
terfenadine	1998	arrhythmias
mibefradil	1998	interactions
troglitazone	<u>2000</u>	<u>hepatotoxicity</u>
alosetron	2000	constipation
cisapride	2000s	arrhythmias
<u>cerivastatin</u>	<u>2001</u>	<u>rhabdomyolysis</u>
rapacuronium	2001	bronchospasm
rofecoxib	2004	myocardial infarction
Adderall XR)	2005	Canada - stroke
hydromorphone	2005	overdose with alcohol
pemoline	2005	hepatotoxicity
natalizumab	2005-2006	CNS viral inflammation

Mitochondrial Impairment of Drugs Receiving Black Box Warnings Hepatotoxicity Cardiovascular

Antivirals	Antibiotics	Anthracyclines	Anti-Cancer
Abacavir	Isoniazid	Daunorubicin	Arsenic Trioxide
Didanosine	Ketoconazole (oral)	Doxorubicin	Cetuximab
Emtricitabine	Streptozocin	Epirubicin	Denileukin diftitox
Entecavir	Trovafloxacin	Idarubicin	Mitoxantrone
Emtricitabine			Tamoxifen
Lamivudine	<u>CNS</u>	NSAIDs	
Nevirapine	Dantrolene	Celecoxib	Beta-Blocker]
Telbivudine	Divalproex Sodium	Diclofenac	Atenolol
Tenofovir	Felbamate	Diflunisal	
Tipranavir	Naltrexone	Etodolac	<u>Antiarhythmic</u>
Stavudine	Nefazodone	Fenoprofen	Amiodarone (oral)
Zalcitabine		Ibuprofen	Disopyramide
Zidovudine		Indomethacin	Dofetilide
		Ketoprofen	Ibutilide
<u>Anti-Cancer</u>	<u>Hypertension</u>	Mefenamic acid	
Flutamide	Bosentan	Meloxicam	<u>CNS</u>
Dacarbazine		Naproxen	Amphetamines
Gemtuzumab		Nabumetone	Atomoxetin
Methotrexate		Oxaprozin	Droperidol
Pentostatin		Piroxicam	Methamphetamine
Tamoxifen		Salsalate	Pergolide
Elevated serum liver enzymes (AST, ALT) reflect hepatocyte death.		Sulindac	
		Thioridazine	<u>Diabetes</u>
		Tolmetin	Pioglitazone
			Rosiglitazone
Lactic acidosis reflects mitochondrial impairment.		<u>Anaesthetic</u>	
		Bupivacaine	
			L

Mitochondria: Bioenergetics, Oxidative Pathology and Cellular Viability Converge

- <u>Cytoplasmic Organelles</u>
- Generate > 90% of cellular energy
- Generate 90% of radicals
- Gatekeepers of cell death (apoptosis & necrosis)
- Steroid synthesis; b-oxidation...
- Endosymbionts co-evolved from
- ancient bacteria
- Mitochondrial DNA = the only non-nuclear genome in all animals
- Replication independent of cell replication

Mitochondrial Compartmentalization

ETS components throughout inner membrane.

Matrix

Outer membrane

Intermembrane Space

see Perkins and Frey, *Micron*, 31:97, 2000. University of California at San Diego Super Computer Center San Diego State University Cristae lumen is contiguous with external intermembrane space via cristae junctions.

COS Cell with Mito-Tracker Red and Hoechst. Photo: S. Wiley, UCSD.

ATP Turnover and Human Metabolism

 Resting metabolism: Female = 6127 kJ/24 hr Male = 7983 kJ/24 hr (DeLorenzo et al, Eur. J. Clin Nutr, 55:208, 2001)

2) ATP hydrolysis under *physiological* conditions = 42-50 kJ/

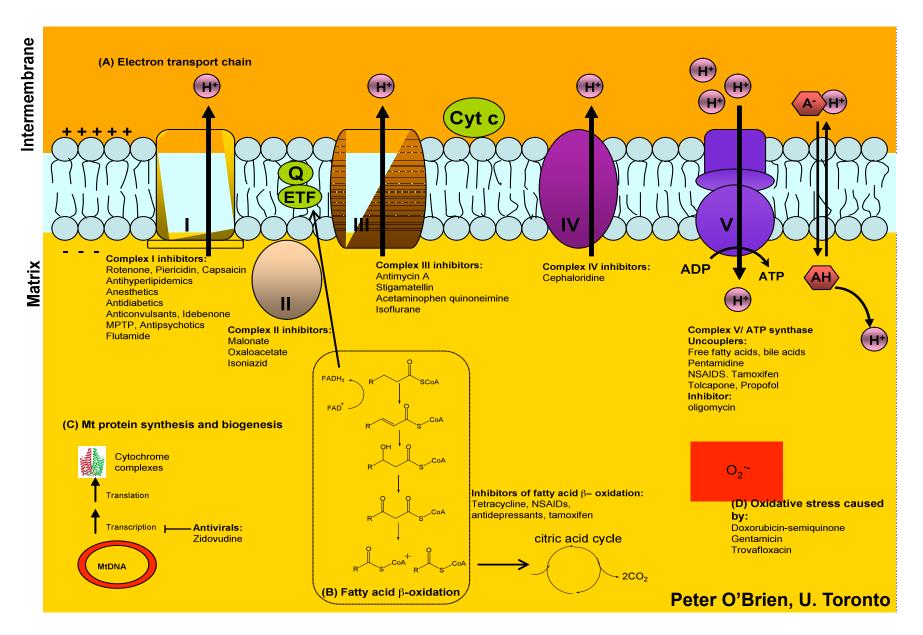
mol (Campbell <u>Biology</u>, Third Edition. Benjamin Cummings, 1993:97-101.)

3) Females turn over 133 mol ATP/da; Males 173 mol ATP/da

4) ATP = 507g/mol

Therefore:

Females turn over 67,431 g/da = 148 lbs of ATP per day Males turn over 87,711 g/da = 193 lbs of ATP per day

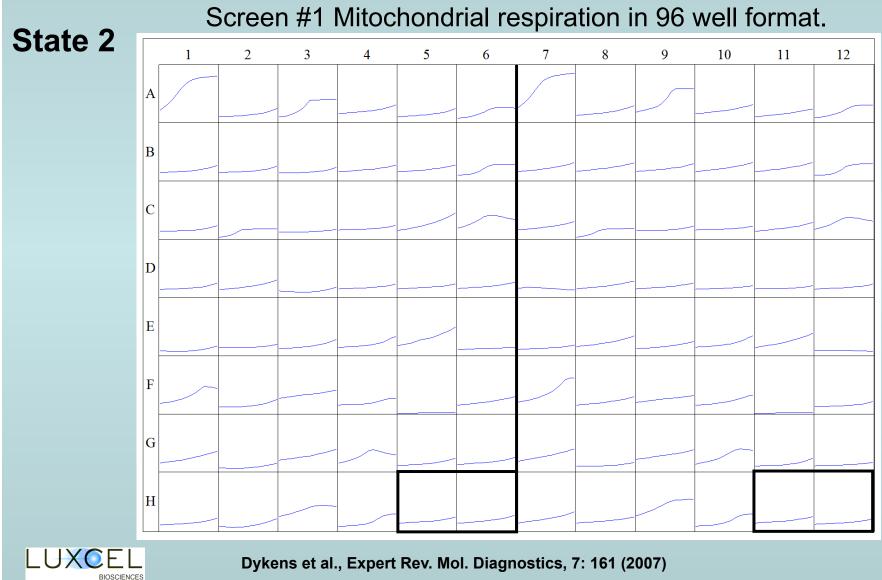

Aerobic Physiological Scope = 10-20X (Hoppeler & Weibel, <u>Encyclopedia of Life Sciences</u>, John Wiley & Sons, 2001)

Mitochondria: Complex Organelle Can Fail in Many Ways

Dykens & Will, Drug Discovery Today, 12:777-785, 2007.

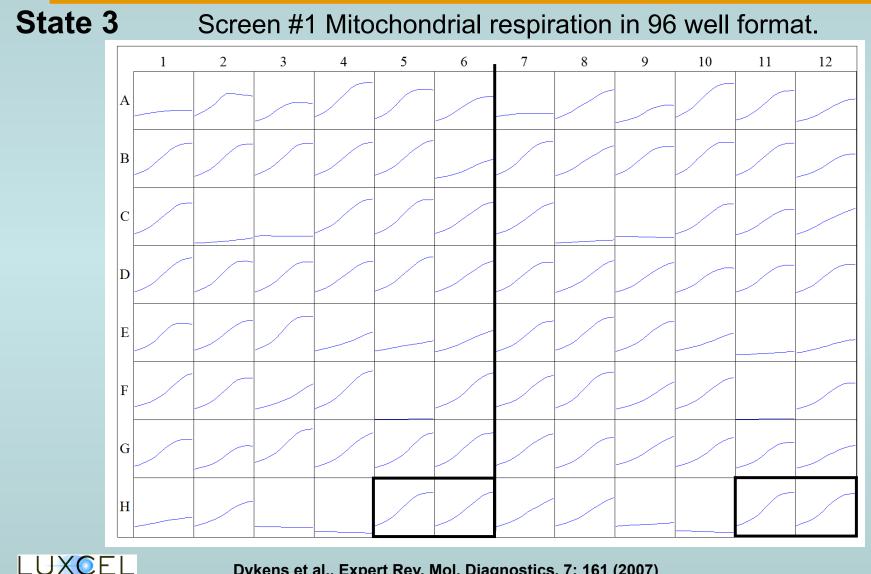
Mitochondrial Drug Interactions

Many Drugs Have Mitochondrial Liabilities


- Many, but not all, drugs with organ toxicity have a mitochondrial liability.
 - Screen of > 550 drugs reveals 34% have mitochondrial liabilities.
- Depending on potency, if a drug has a mitochondrial liability, it <u>will</u> have deleterious consequences.
 - Bioaccumulation alters PK.
 - >10,000-fold concentration of some cations in matrix over plasma.
- Severity of such adverse effects is idiosyncratic.
 - Function of organ history and genetics (incl. mtDNA).
 - Preclinical assessments are done in young, perfectly healthy animals.
 - Threshold effects and physiological scope.

Evidence of Drug-Induced Mitochondrial Dysfunction is Rapidly Accumulating

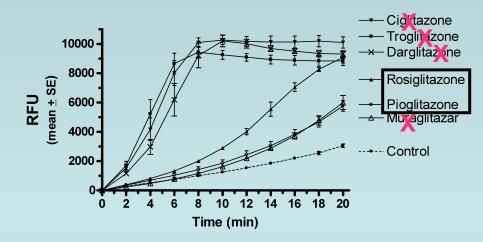
Selected drugs associa	ted with idiosyncratic DILI that exhibit a clear mitochondrial hazard	
Drug	Mitochondrial liability in hepatocytes	-
Troglitazone	Bedoucha et al. (2001); Haskins et al. (2001); Tirmenstein et al. (2002); Narayanan et al. (2003); Shishido et al. (2003); Bova et al. (2005);	
Diclofenac	Masubuchi et al. (2006); Ong et al. (in press) Petrescu and Tarba (1997); Bort et al. (1998); Masubuchi et al. (1998); Masubuchi et al. (1999); Masubuchi et al. (2000); Masubuchi et al. (2003); Gomez-Lechon et al. (2003a); Gomez-Lechon et al. (2003b);	
Nimesulide	Lim et al. (2006) Mingatto et al. (2000); Caparroz-Assef et al. (2001); Mingatto et al. (2002); Tay et al. (2005); Ong et al. (2006)	
Mefenamic acid	McDougall et al. (1983); Masubuchi et al. (2000)	
Tolcapone Valproic acid	Haasio et al. (2002a,b,c) Bjorge and Baillie (1991); Keller et al. (1992); Ponchaut et al. (1992); Tang et al. (1995); Trost and Lemasters (1996); Sobaniec-Lotowska (1997); Tong et al. (2005)	В
Leflunomide Amiodarone	Spodnik et al. (2002) Fromenty et al. (1990); Berson et al. (1998); Spaniol et al. (2001); Kaufmann et al. (2005)	lin A
Trovafloxacin Simvastatin Perhexiline Isoniazid Dantrolene Sulindac	Liguori et al. (2005) Velho et al. (2006) Deschamps et al. (1994); Berson et al. (1998) Schwab and Tusch1 (2003); Chowdhury et al. (2006) Darios et al. (2003); Munns et al. (2005) Leite et al. (2006)	,
Fialuridine Lamivudine Stavudine	McKenzie et al. (1995); Hom et al. (1997); Lewis et al. (1997) Note et al. (2003) Gaou et al. (2001); Gerschenson et al. (2001); Pace et al. (2003); Velsor et al. (2004)	


Boelsterli & Lim. Mitochondrial abnormalities--a link to idiosyncratic drug hepatotoxicity? *Toxicol Appl Pharmacol* 220:92-107, 2007.

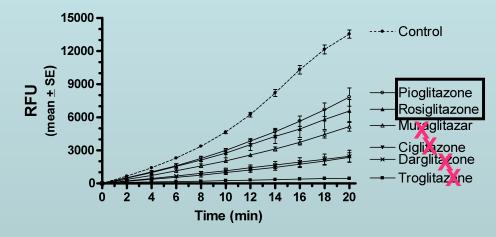
Screens to Detect Mitochondrial Toxicity

Will et al., Nature Protocols 1: 2563 (2007).

Screens to Detect Mitochondrial Toxicity

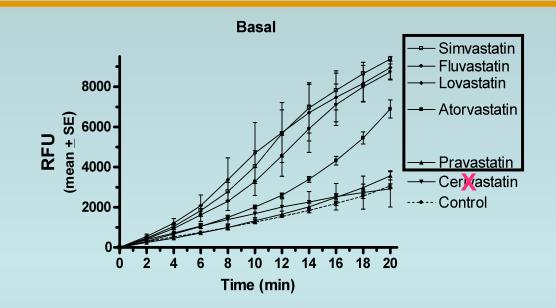


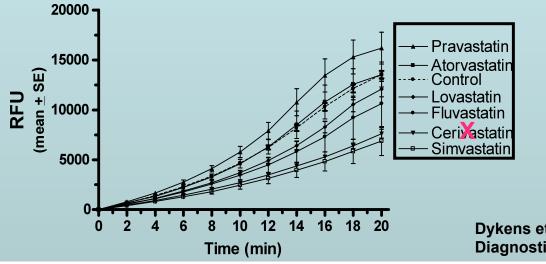
Dykens et al., Expert Rev. Mol. Diagnostics, 7: 161 (2007) Will et al., Nature Protocols 1: 2563 (2007).


BIOSCIENCES

Mitochondrial Effects of Thiozolidinediones Vary

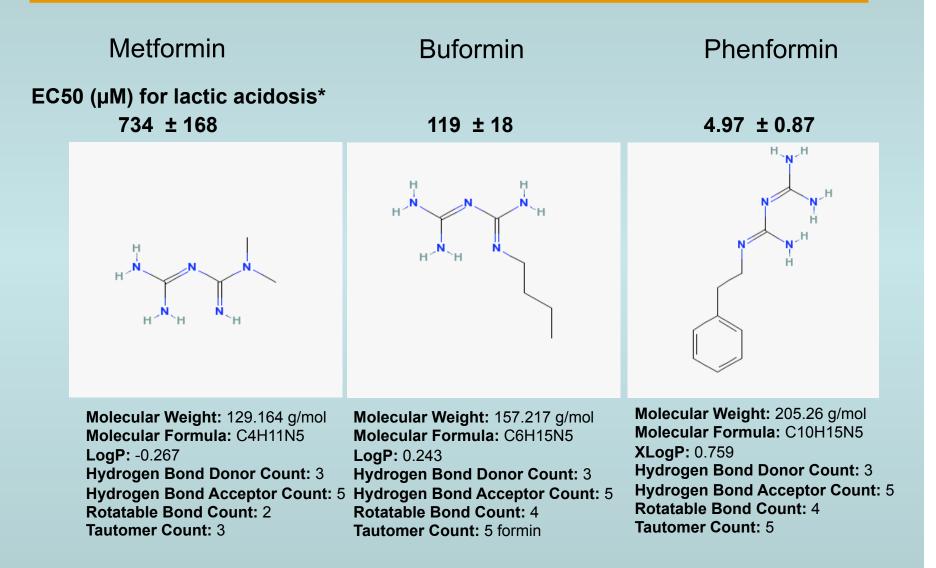
State 2



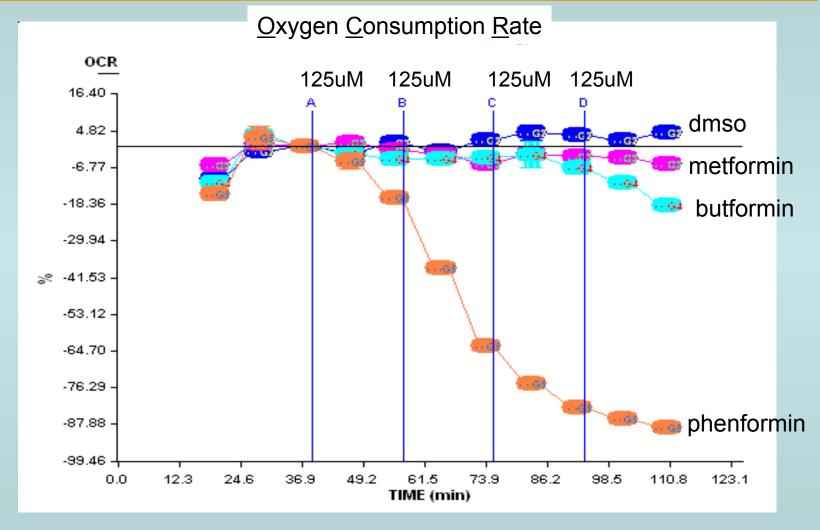

Dykens et al., Expert Rev. Mol. Diagnostics, 7: 161 (2007)

Drugs present at 25nmol/mg mitochondrial protein. N=4, except for controls N=48.

Some Statins Impair Mitochondrial Function



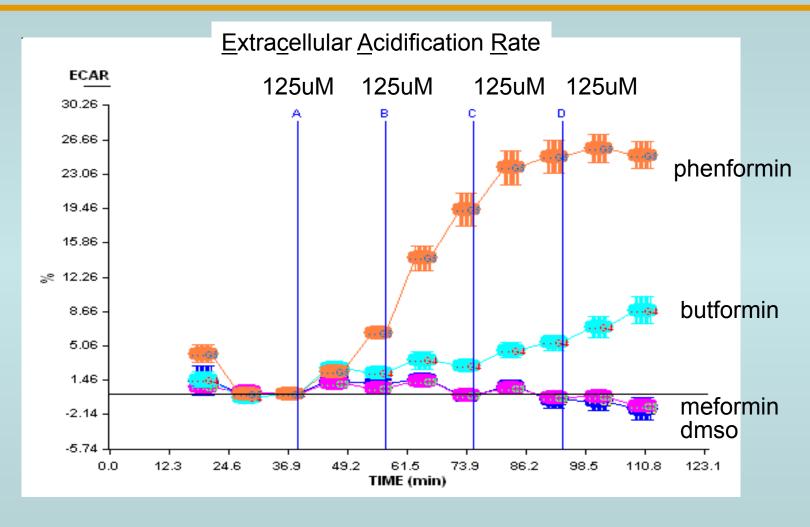
ADP-Driven



Dykens et al., Expert Rev. Mol. Diagnostics, 7: 161 (2007)

Screen #2: Biguanides Analyzed via Seahorse Technology

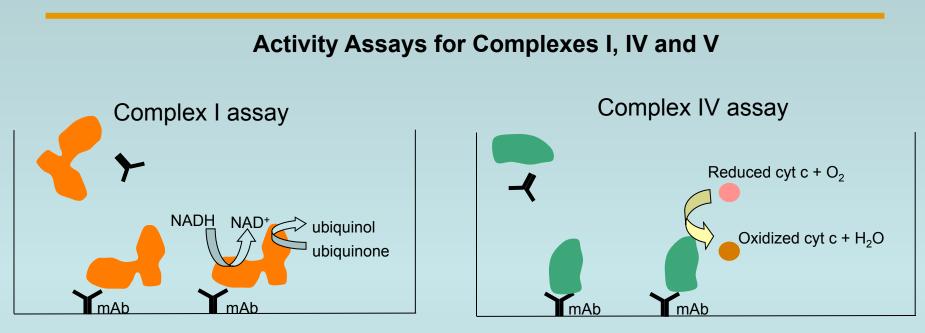
Metabolic Profiling to Detect Mitochondrial Toxicity

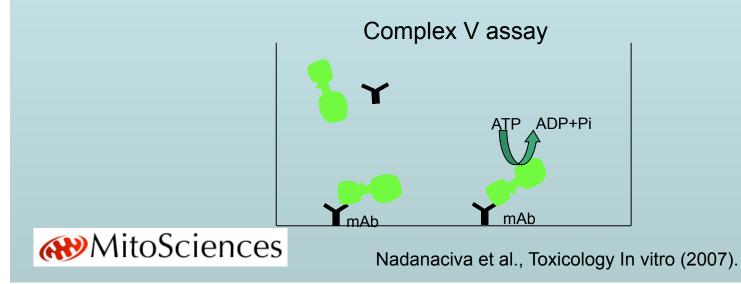


Hep G2 cells

Dykens et al, Toxicology Applied Pharmacology, 2008.

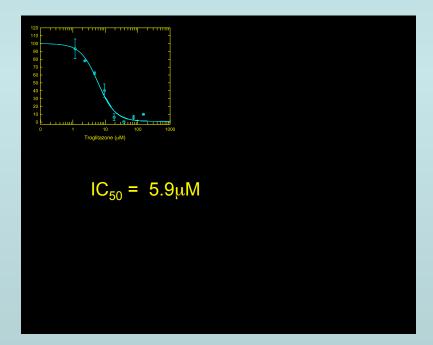
Metabolic Profiling to Detect Mitochondrial Toxicity

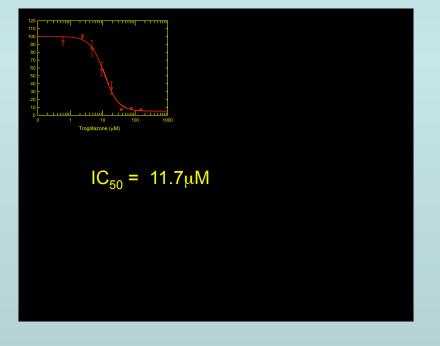




Dykens et al, Toxicology Applied Pharmacology, 2008.

Screen #3: Identifying Site of Action

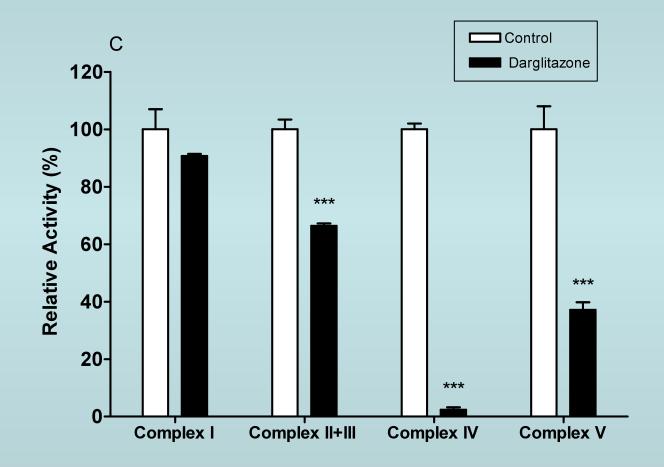




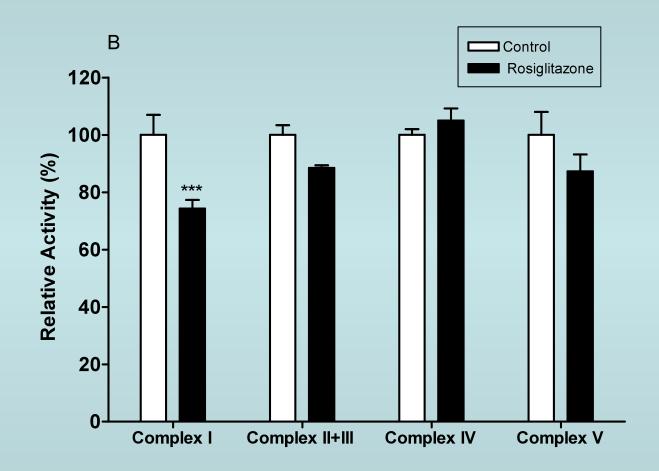
Troglitazone

- **Complex I Activity: Not inhibited at 150 μM.**
- Complex II/III Activity: Not inhibited at 150 μM
- Complex IV Activity: IC₅₀ 5.9 μM
- Complex V Activity: IC₅₀ 11.7 μM

"Fingerprint", Rank Order Potency

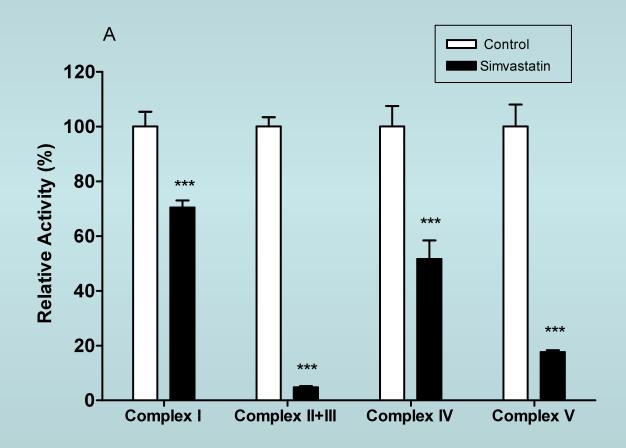


Darglitazone Inhibits Several ETS Complexes


MitoSciences

Nadanaciva et al., Toxicology & Applied Pharmacology, 2007.

Rosiglitazone Modestly Inhibits CI,


MitoSciences

Nadanaciva et al., Toxicology & Applied Pharmacology, 2007.

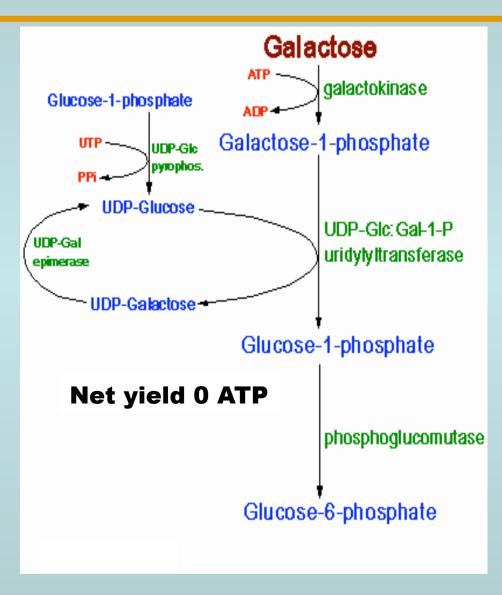
Simvastatin also Inhibits Several Complexes

MitoSciences

Nadanaciva et al., Toxicology & Applied Pharmacology, 2007.

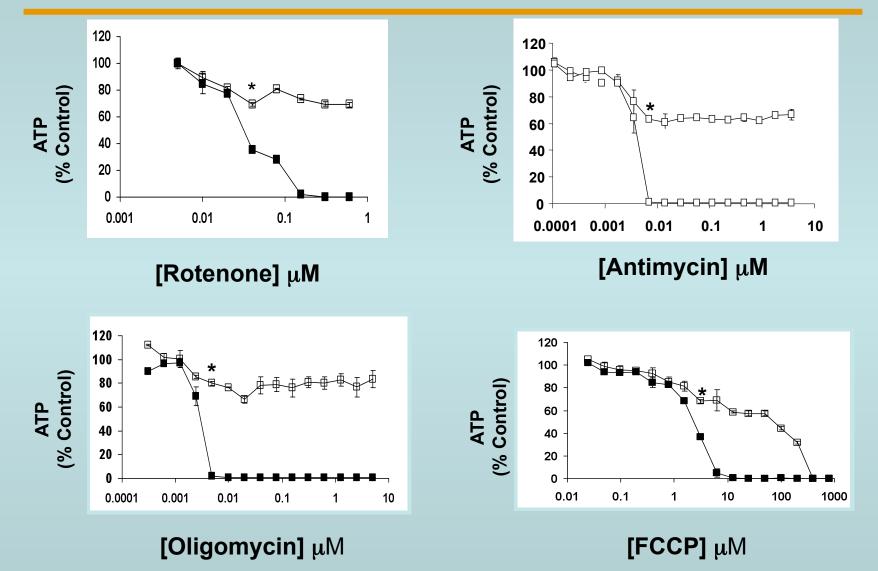
Screen #4: Circumventing the Crabtree Effect

Crabtree Effect (1929): inhibition of respiration by elevated glucose.


Warburg Effect (1929): aerobic glycolysis yields lactate despite competent mitochondria.

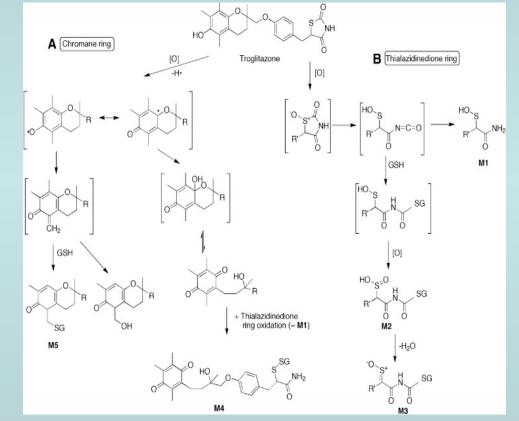
Contemporary cell culture almost uniformly uses 25mM glucose media (5X physiological !)

Transformed cells are characterized by low rates of O_2 consumption & resistance to mitotoxicants.


Marroquin et al., Tox. Sci, 97:539, 2007.

Galactose in Glycolysis yields No ATP

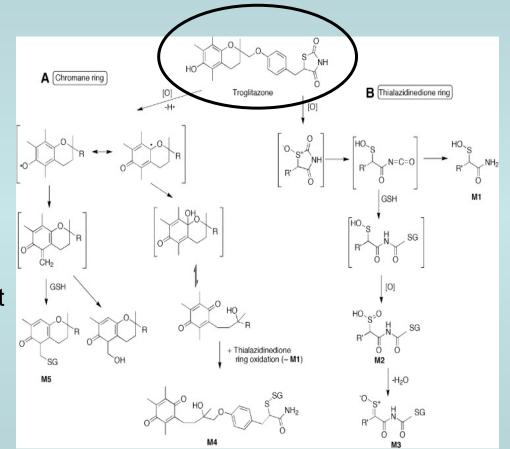
Michael W. King, Ph.D / IU School of Medicine


Cells Grown in Galactose Become Susceptible to Mitochondrial Inhibition

Marroquin et al., Tox. Sci, 97:539, 2007.

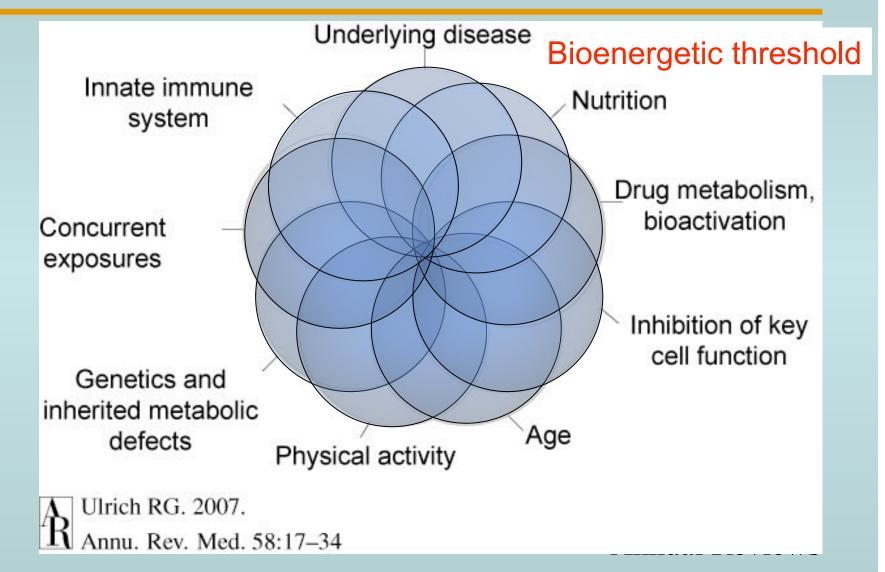
Three Hypotheses for Idiosyncratic Drug Response

- Haptan: xenobiotic binds to protein and elicits an immune response. (Landsteiner 1930s)
 - eliminate "non-self" molecules
 - penicillin allergic response
- 2. **Danger**: immuno-response to cytotoxicity from parent or metabolite. (Matzinger, 1994)
- 3. Pharmacological Interaction: xenobiotic binds to T cell receptormajor histocompatibility complex to yield immune response. (Pichler, 2002)



Uetrech, Drug Metab Rev, 38:745, 2006. Masubuchi,

Masubuchi, Drug Metab Pharmacokinet. 21:347, 2006


Three Four Hypotheses for Idiosyncratic Drug Response

- 1. Haptan
- 2. Danger
- 3. Pharmacological Interaction
- **4. Mitochondrial Dysfunction**: "off-target" impairment yields organ tox.
 - Bioenergetic &/or oxidative
 - Parent or metabolite
 - Drug effect a constant
 - Genetics & organ history impart idiosyncratic response.
 - Bio-accumulation exacerbates

Masubuchi, Drug Metab Pharmacokinet. 21:347, 2006

Risk Factors Converge to Yield Idiosyncratic Toxicity

Drug-Induced Mitochondrial Toxicity

- Many, but not all, drugs with organ toxicity have mitochondrial liabilities.
 - Elevated serum liver enzymes = hepatocyte death
 - Lactic acidosis is classic hallmark.
- Depending on severity, if a drug has a mitochondrial liability, it <u>will</u> have deleterious consequences.
 - Acute vs. Chronic Exposure
 - Bio-accumulation
 - Threshold effects
 - Combination therapies worse (cervistatin & gemfibrozil)
 - Idiosyncratic responses function of genetics and organ history.

"The first opportunity to prevent hepatotoxicity arises in the early stages of drug development..."

Navarro & Senior, NEJM, 354:731, 2006

Dykens et al., Expert Rev. Mol. Diagnostics, 7: 161 (2007)