

Stealth Peptides

Leading Mitochondrial Therapeutics

Mitochondria Origin

- Mitochondria primer
- Origins of mitochondria
 - o Prokaryotic cells including bacteria
 - o Eukaryotic cells

Mitochondria

Function

* Mitochondria

- The organelle that produces energy in cells, often termed the "powerhouse of cells"
- ❖ Mitochondria produce energy or **ATP** using energy from food
- * Primary source of **ROS**, initiates apoptosis or cellular death

Slide 3 **Stealth Peptides**

Continuum of Mitochondrial Dysfunction

Disease Progression

Progression of Disease

Mitochondria

Role in Disease

- Diseased mitochondria produce excess **ROS** and lack **ATP** stores
 - Vicious cycle of disease progression
- Heart failure
- **Autism**
- Orphan mitochondrial diseases
- **❖** Inflammation and sepsis
- Neurodegeneration
- Diabetes
- Ophthalmology
- Kidney disease

Slide 5 Stealth Peptides

Mitochondria

Therapeutic Hurdles

- Challenges to treating mitochondria
 - Cellular and outer mitochondrial membrane penetration
 - Reduced membrane potential in disease
 - Mitochondrial toxicity
- Critical need for therapies to overcome these hurdles

Slide 6 Stealth Peptides

Bendavia

First-in-Class Mitochondrial Targeted Compound

- * Targets cardiolipin, found exclusively in the inner mitochondrial membrane
 - o Restores ATP
 - o Prevents the formation of **ROS**
- ❖ No apparent effect in healthy mitochondria
- Ongoing and planned Phase 2 clinical trials
 - OACS study, led by Dr. Michael Gibson
 - o CKD study, led by Dr. Stephen Textor
 - ODME study, led by Dr. Jeffrey Heier

Bendavia Therapeutic Potential

Bendavia

Therapeutic Potential

Chronic Kidney Disease Restores Renal Function in Animal Model

Hypertension

JOURNAL OF THE AMERICAN HEART ASSOCIATION

NORMAL

ARAS

ARAS+PTRA+vehicle

ARAS+PTRA+bendavia

Firin et al. ASN 2011

Slide 10 Stealth Peptides

Bendavia Therapeutic Potential

Aging Restores Muscle Function in Animal Model

No apparent effect of Bendavia on normal muscle function

Marcinek et al. Aging Cell 2013

Bendavia

Slide 13 **Stealth Peptides**

Diabetic Vision Loss

No apparent effect of Bendavia on blood glucose or body weight

Alam et al. ADA 2012

SummaryMitochondria and Bendavia

- Everyone has mitochondrial disease
 - The continuum from aging to genetic mitochondrial diseases
- ❖ The continuum of mitochondrial dysfunction features increased ROS and decreased ATP
- ❖ Bendavia appears to restore **ATP** levels and prevents **ROS** formation, without affecting healthy mitochondria
 - OMore than 100-peer reviewed papers and abstracts
 - OMore than 300 patients and volunteers of clinical experience with Bendavia
- No apparent effect in normal, healthy mitochondria

