Novel therapies for inborn errors of fatty acid oxidation: A personalized medicine approach

Jerry Vockley, M.D., Ph.D.

University of Pittsburgh Cleveland Family Endowed Chair in Pediatric Research Children's Hospital of Pittsburgh Chief of Medical Genetics Director of the Center for Rare Disease Therapy

Monthly Mito

EXPERT SERIES

WELCOME!

Fatty Acid Oxidation Disorders: the Other Mitochondrial Energy Diseases

Dr. Jerry Vockley, MD, PhD University of Pittsburgh Children's Hospital International Network for Fatty Acid Oxidation Research and Management (INFORM)

- Research funding
 - NIH
 - Ultragenyx Pharmaceuticals
 - Reneo Phamaceuticals
 - Reata Pharmaceuticals
 - Moderna Pharmaceuticals
 - Biomarin Pharmaceuticals

- Consulting
 - American Gene Technologies
 - Moderna Pharmaceuticals
 - Cobalt, Inc
 - DNARx
 - Rand Corporation

The central dogma

Energy metabolism interactions

- Multiple pathways
- Functionally and physically interact
- Overlap in clinical symptoms
- Secondary symptoms may dominate clinical picture

The mitochondrion

Mitochondria

- 100s-1000s per cell
- Bacterial origins
- Cytoplasmic
- Subcellular organelles
- Dynamic, pleomorphic, motile

Energy protein complex model

Clinical implications

A house of cards

Harvesting energy

Complete oxidation to CO₂ and H₂0

Source	ATP/molecule	Total ATP
7 FADH ₂	2	14
7 NADH	3	21
8 Acetyl-CoA	10	80
Activation	-2	-2
NET		123

Energy in long chain FAODs

Interupted oxidation to CO_2 and H_2O

Sourcec	ATP/molecule	Total ATP
7 FADH ₂	0	0
7 NADH	0	0
8 Acetyl-CoA	0	0
Activation	-2	-2
NET		-2

Anaplerotic therpy

FDA triheptanoin trial

- Double blind comparison of C7 vs C8
- 4 month treatment
- Functional and metabolite before and after treatment

Conclusions

- Triheptanoin similarly tolerated as MCT
- No observed skeletal muscle effect
- Cardiac effect of triheptanoin
 - Improved LV ejection fraction
 - Lower HR for same work performed
- Similar CPK, acylcarnitines & ketones

Ultragenyx clinical trial

Characteristic	n (%)
Prior treatment with MCT	27 (93)
Clinical Manifestations Skeletal Myopathy Hepatic Disease Cardiac Disease	25 (86) 3 (10) 2 (7)
Disease History ^a Rhabdomyolysis Muscle Pain Exercise Intolerance Hypoglycemia Muscle Weakness Cardiomyopathy	26 (90) 22 (76) 21 (72) 18 (62) 16 (55) 13 (45)

^aOccurring in >32% of subjects.

78 Week outcomes

	Mean (SD) Annualized Event/Year			
Major Clinical Event	Pre-treatment	Post- treatment	% Change	P Value ^b
Overall MCEs	1.69 (1.61)	0.88 (1.14)	-48.1	0.021
Rhabdomyolysis Events	1.30 (1.50)	0.83 (1.15)	-36.1	0.119
Hypoglycemia Events	0.32 (0.91)	0.02 (0.12)	-92.8	0.068
Cardiac Events	0.07 (0.27)	0.02 (0.12)	-69.6	0.309
Hospitalizations ^a	1.39 (1.35)	0.65 (1.01)	-53.1	0.016
Rhabdomyolysis	1.03 (1.90)	0.63 (1.00)	-38.7	0.104
Hypoglycemia	0.30 (0.83)	0	-100.0	0.067
Cardiomyopathy	0.07 (0.27)	0.02 (0.12)	-69.6	0.309

- 29 subjects (100%) with ≥1 treatment emergent adverse event (TEAE)
- 19/29 subjects (66%) had treatment-related AEs
- 19 subjects (66%) serious AEs
 - 1 SAE (gastroenteritis) was considered possibly related to study drug
- No subjects died
- 1 subject discontinued from study (moderate diarrhea)
- 3 subjects discontinued UX007 (unrelated to study drug)
 - Moderate myalgia
 - Mild GE reflux and vomiting
 - Mild pain

Most Frequent TEAEs	%
Diarrhea	55
Rhabdomyolysis	48
Vomiting	48
Upper respiratory tract infection	41
Viral gastroenteritis	34
Headache	31
Pyrexia	31
Abdominal pain	28
Gastroenteritis	21

Safety

Energy protein complex model

VLCADD oxygen consumption is impaired

VLCADD

Cytokines in VLCAD patients

Key:			
IL1b (pg/ml)	0	-	141
IL6 (pg/ml)	0	-	591
GMCSF (pg/ml)	0	-	468
IFNg (pg/ml)	0	-	4657
MCP1 (pg/ml)	0	-	278
MIP1b (pg/ml)	0	-	378
TNFa (pg/ml)	0	-	442

JP4 Rx of LCHADD deficiency

HADHA common mutation 1528G>C mutation

Inhibitor induced chaperonin effect

TMZ stabilization of FAO proteins

VLCADD fibroblasts

UPMC | CHILDREN'S HOSPITAL OF PITTSBURGH

Cardiolipin (CL)

Cardiolipin 1',3'-Bis-[1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phospho]-sn-glycerol

- Dimeric phospholipid
- Conical shape maintains membrane curvature, optimizes electron transfer
- Anionic CL serves as a proton trap on the outer leaflet of the IMM channeling protons to ATP synthase
- Monolysocardiolipin acetyltransferase contained on C-terminus of αTFP (HADHA)

Cardiolipin binding peptide Rx

Transcriptional activators

- PPARδ agnonists more potent than bezafibrate
- Increase in expression and function of VLCAD
- Clinical trial starting this year

VLCAD patient derived fibroblasts

VLCAD mRNA Treatment

moderna

messenger therapeutics

MCAD deficiency

- K304E MCAD mutation is a folding defect
- MCAD metabolizes phenylbutyryl-CoA as substrate
- Binding pocket analogues are strong chaperonins
- Phenylbutyryl-CoA as a chaperonin therapy for MCAD deficiency

MCAD and phenylbutyrate

Control lymphoblasts MCAD deficient lymphoblasts (TL671) 400 2500 350 Activity 2000 300 activity 200 **Relative Enzyme** 1500 **Relative Enzyme a** 20 0 0 1000 500 0 160µM 320µM 640µM 1280µM 12.8mM 0μΜ 10µM 40µM 0μΜ 10µM 40µM 160µM 320µM 640µM 1280µM12.8mM Phenylbutyric acid concentration Phenylbutyric acid concentration

Clinical trial urine acylglycines

- Ben Van Houten
- Peter Wipf
- Abbe de Vallejo
- Melanie Gillingham
- James Conway
- Simon Watkins

Collaborators

Thank you!

