Secondary Mitochondrial Dysfunction in Neurodevelopmental Disorders: Origins, Significance and Treatment

Richard E. Frye, M.D., Ph.D.

Chief, Section on Neurodevelopmental Disorders Director of Autism Program Barrow Neurological Institute at Phoenix Children's Hospital Professor of Child Health University of Arizona College of Medicine

Disclaimer

Every attempted has been made to make this presentation as accurate as possible. The information is provided without any expressed or implied warranty. This presentation should not be substituted for medical advice. Treatments in this lecture are considered offlabel and are not FDA-approved.

BARROW

Neurological Institute

PHOENIX CHILDREN'S

Hospital

Mitochondrial Disease

- Relatively new field
- First diseases described in 1988
 - Wallace, Leber's hereditary optic neuropathy, published in Science
 - Holt, Mitochondrial Myopathy, published in Nature
- Usually defined by extremely clinical symptoms with a progressive course
 - High energy dependent tissues
 - Neurological Disease
 - Gastrointestinal Disease
 - Immune Dysfunction
- Not just powerhouse, involved in
 - programmed (apoptotic) cell death
 - Oxygen Radical Regulation

Now believed to that Mitochondrial Dysfunction is Important in Many Diseases

BARROW

Neurological Institute

Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment

PHOENIX

Hospital

HILDREN'S

BARROW

Neurological Institute

Mol Syndromol DOI: 10.1159/000446586

Mitochondrial Dysfunction

Dmitriy M. Niyazov^a Stephan G. Kahler^b Richard E. Frye^b

Mitochondrial Dysfunction in Autism

PHOENIX CHILDREN'S Hospital

Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

DA Rossignol¹ and RE Frye² Mol Psych 2012, 17:290-314

General ASD population Mitochondrial disease in ASD Elevated lactate Elevated pyruvate Elevated lactate/pyruvate ratio Elevated alanine Low total carnitine Elevated creatine kinase Elevated ammonia Elevated AST		St	audies	Total N 536 479 110 192 36 30 47 80 147	Overall prevalence 5.0% (3.2%, 6.9%) 31.1% (27.0%, 35.3%) 13.6% (7.2%, 20.1%) 27.6% (21.2%, 33.9%) 8.3% (0.0%, 20.1%) 90.0% (81.0%, 99.0%) 46.8% (32.4%, 61.2%) 35.0% (24.5%, 45.5%) 45.6% (37.5%, 53.7%) ^a		Discrepancy between prevalence of diagnosed mitochondrial disease and prevalence of biomarkers of mitochondrial disease likely be due to criteria used to define			
Elevated ALT		1 87				(0.5%, 13.5%)	mitochondrial disease			
Biomarker	Number of studies	<i>Total</i> N		1ean ;% CI)	<i>Total</i> N	Control Mean (95% CI)	F-value	Hedge's g (CI)		
Lactate (mMl ⁻¹) Pyruvate (nMl ⁻¹) Carnitine (mgml ⁻¹) Ubiquinone	5 1 1 1	114 24 30 15	0.12 (0 3.83 (3	.61, 1.88) .11, 0.14) .44, 4.31) 1.9, 103.0)	114 24 30 15	0.91 (0.87, 0.96) 0.06 (0.06, 0.06) 6.40 (6.22, 6.62) 144.2 (130.4, 161)	20.25^{\dagger} 4.61^{\dagger}	$egin{array}{cccccccccccccccccccccccccccccccccccc$		

Mitochondrial Dysfunction in Autism

Cecilia Giulivi, PhD

- Yi-Fan Zhang, BS
- Alicja Omanska-Klusek, MS
- Catherine Ross-Inta, BS
- Sarah Wong, BS
- Irva Hertz-Picciotto, PhD
- Flora Tassone, PhD
- Isaac N. Pessah, PhD

JAMA, December 1, 2010–Vol 304, No. 21 2389

- Lymphocytes from 10 children with autism and 10 age and gender matched controls
- 80% demonstrated abnormal function in at least one electron transport chain complex
 - 60% complex I abnormality
 - 40% complex V abnormality
 - 50% multiple complexes
- 20% demonstrated abnormalities in cytB, a mitochondrial DNA gene

Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

DA Rossignol¹ and RE Frye² Mol Psych 2012, 17:290-314

BARROW

Neurological Institute

ASD children		ASD	ASD/MD		General ASD			General MD		
with		%	Ν	%	χ²	Р	%	χ²	Р	
mitochondrial	Male	61	72	81	18.7	< 0.0001	58	0.26	0.61	
disease have	Developmental regression	52	83	25	32.3	< 0.0001	60	2.2	0.14	
	Seizures Hypotonia	41 62	86 55	11 51	79.1 2.6	<0.0001 0.10	33 67	2.48 0.62	0.11 0.43	
more medical	Fatigue/lethargy	54	61	51	2.0	0.10	19	48.6	< 0.0001	
abnormalities	Ataxia	58	19				13	34.0	< 0.0001	
	Growth delay	21	73							
than idiopathic	Motor delay	51	79	9	170.1	< 0.0001				
•	GI abnormalities	74	35	20	63.8	< 0.0001	39	18.0	< 0.0001	
ASD children	Cardiomyopathy Myopathy	24 0	38 12				26 11	0.1 1.5	0.79 0.22	
	Elevated lactate	78	50	31	51.6	< 0.0001	54	12.4	< 0.001	
	Elevated pyruvate	45	22	14	17.6	< 0.0001			10.001	
Only 23% of	Elevated lactate/pyruvate ratio	43	23	28	2.6	0.11				
	Abnormal organic acids	36	36							
ASD children	Elevated creatine kinase	34	29	47	1.96	0.16				
with	Elevated alanine Abnormal brain imaging	32 23	28 69				70	72.6	< 0.0001	
with	Normal ETC activity	16	69				3	40.1	< 0.0001	
mitochondrial	Abnormal complex I	53	96				45	2.48	0.12	
	Abnormal complex II	9	65				8	0.09	0.76	
disease have	Abnormal complex III	30	96				31	0.04	0.83	
mitochondrial	Abnormal complex IV	20	97				34	8.47	0.004	
mitochonunai	Abnormal complex V	23	44				12	5.0	0.03	
DNA	Multiple complex deficiency Elevated citrate synthase	36 24	59 17				27 44	2.43 2.76	0.12 0.10	
	Abnormal light microscopy	18	49				81	126.4	< 0.0001	
abnormalities	mtDNA abnormality	23	87				16	3.17	0.08	

Autism Associated With the Mitochondrial DNA G8363A Transfer RNA^{Lys} Mutation

	II-1	II-2	I-1	II-3	11-4	
I						$-\Box$
n	the general second	O		•		
Irritable bowel	_	-	+	-	-	
Epilepsy	++	-	_	+	+	
Learning disability	++	-	-	-	-	
Cognitive regression	-	-		+	+++	
Leigh syndrome	-	-	-	+++	-	
Autism	_	-	-	÷	+++	
ain Magnetic Resonance Imaging	Normal	Normai	ND	Abnormal	Normal	
uscle analysis	ND	ND	ND			
Histology				Normal	↑ Lipid	
Histochemistry				COX- Su	bsarcolemmal+	
Biochemistry				↓ CIV & V	↑ CI	
3863A mitochondrial DNA mutation						
PCR analysis in blood	+	+	+	+	+	
Percent in blood	ND	ND	28%	82%	60%	
Percent in muscle	ND	ND	ND	86%	61%	

- = absent; + = mild; ++ = moderate; +++ = severe; ND = not determined; 1 = increased, 4 = decreased; C = citrate synthase corrected respiratory chain complex activity;

COX- = absence of cytochrome c oxidase staining; PCR = polymerase chain reaction.

(J Child Neurol 2000;15:357-361).

Autistic disorder with complex IV overactivity: A new mitochondrial syndrome

Journal of Pediatric Neurology 9 (2011) 427-434

Richard E. Frye^{a,*} and Robert K. Naviaux^b

Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1

Bioenergetic variation is related to autism symptomatology

Leanna Delhey^{1,2} · Ekim Nur Kilinc^{1,2} · Li Yin³ · John Slattery^{1,2} · Marie Tippett^{1,2} · Rebecca Wynne^{1,2} · Shannon Rose^{1,2} · Stephen Kahler^{1,2} · Shirish Damle⁴ · Agustin Legido⁴ · Michael J. Goldenthal⁴ · Richard E. Frye^{1,2}

Metab Brain Dis DOI 10.1007/s11011-017-0087-0

Seahorse Bioscience Extracellular Flux Analyzer

- Poly D lysine coated plates
- 110k cells/well
- Plated 1hr prior to assay
- Seahorse DMEM
 - 11mM glucose
 - 2mM glutamax
 - 1mM pyruvate
- DMNQ added directly to cells in plate
- Each plate with an AD/ Control LCL pair

BARROW

Neurological Institute

OPEN OACCESS Freely available online

Oxidative Stress Induces Mitochondrial Dysfunction in a Subset of Autism Lymphoblastoid Cell Lines in a Well-Matched Case Control Cohort

Shannon Rose, Richard E. Frye*, John Slattery, Rebecca Wynne, Marie Tippett, Oleksandra Pavliv, Stepan Melnyk, S. Jill James

Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America

Cluster analysis reveals 2 significantly different subgroups.

- AD-N (n=17)
- AD-A (n=8)

FASEB JOURNAL • RESEARCH • www.fasebj.org

Mitochondrial and redox abnormalities in autism lymphoblastoid cells: a sibling control study

Shannon Rose,^{*,†,1} Sirish C. Bennuri,^{*,†} Rebecca Wynne,^{*,†} Stepan Melnyk,^{*,†} S. Jill James,^{*,†} and Richard E. Frye^{*,†}

Mitochondrial Dysfunction in Autism

Mechanisms of Molecular Dysregulation

Mitochondrial Dysfunction in Autism

Effects of the Environment

BARROW

Neurological Institute

Mitochondrial Dysfunction in Autism

BARROW

Neurological Institute

PHOENIX CHILDREN'S

Iosnital

25% of Children with Autism also show abnormal Reserve Capacity

HOENIX

Hospital

BARROW

Neurological Institute

This pattern of abnormal Reserve Capacity is distinct from children with classic mitochondrial disease

Changes in Mitochondrial Function in Childhood is Associated with Exposure to Air Pollution (PM2.5) during Gestation

BARROW

Neurological Institute

HOENIX

Hospital

HILDREN'S

Mitochondrial Dysfunction in Autism

Effects of the Gut Microbiome

THE HUMAN

Bacteria, fungi, and viruses outnumber human cells in the body by a factor of 10 to one. The microbes synthesize key nutrients, fend off pathogens and impact everything from weight gain to perhaps even brain development. The Human Microbiome Project is doing a census of the microbes and sequencing the genomes of many. The total body count is not in but it's believed over 1,000 different species live in and on the body.

25 SPECIES in the stomach include: --

Helicobacter pylori
 Streptococcus thermophilus

500-1,000 SPECIES

in the intestines include: -

Lactobacillus casei
 Lactobacillus reuteri
 Lactobacillus gasseri
 Escherichia coli
 Bacteroides fragilis
 Bacteroides thetaiotaomicron
 Lactobacillus rhamnosus
 Clostridium difficile

SOURCES: NATIONAL INSTITUTES OF HEALTH, SCIENTIFIC AMERICAN: HUMAN MICROBIOME PROJECT

MICROBIOME 600+ SPECIES

 in the mouth, pharynx and respiratory system include:

Streptococcus viridans
 Neisseria sicca
 Candida albicans
 Streptococcus salivarius

1,000 SPECIES in the skin include:

Pityrosporum ovale
 Staphylococcus epidermidis
 Corynebacterium jeikeium
 Trichosporon

Staphylococcus haemolyticus

in the urogenital tract include:

Ureaplasma parvum Corynebacterium aurimucosum

Dean Tweed • POSTMEDIA NEWS / IMAGE: Fotolia

The microbiota influences physiology by

BARROW

Neurological Institute

PHOENIX

Hospital

HILDREN'S

Short chain fatty acids

Passive/active uptake to gut and CNS (monocarboxylate transporters (fatty acids, ketones)

HOENIX

Iosvital

BARROW

Neurological Institute

Gut motility and inflammation Malabsorption Tight/Gap Junction impairment barrier dysfunction (immune and enteric nervous system effects)

Altered gene expression (Histone deacetylase inhibition) CREB activation (memory) Epigenetic effects (More pronounced at critical neurodevelopmental Windows) Short Chain Fatty Acid Bacterial Fermentation Products

Autism-like behavior Repetitive, Antisocial, Object fixation, Anxiety-like behavior, Perseveration Seizure disorder, Dystonia, Tics, Sensory processing Mitochondria Altered TCA cycle Phospholipid alterations Oxidative stress Reduced glutathione, Carnitine deficiency

Fatty Acid G coupled protein receptor activation Neurotransmitter synthesis (catecholamine, 5HT) and release Increased intracellular calcium

> Neuroinflammation/neurodevelopment Cortical dysplasia

> > Gap Junction closure Electrotonic coupling, Neuronal Migration Impaired synaptic pruning

Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

Derrick F. MacFabe, MD*

Rodents

Citation: Transl Psychiatry (2013) 3, e220; doi:10.1038/tp.2012.143 © 2013 Macmillan Publishers Limited All rights reserved 2158-3188/13

www.nature.com/tp

Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder

RE Frye¹, S Melnyk¹ and DF MacFabe²

- 213 ASD patients screened with acyl-carnitine biomarkers
- 74 (35%) with >=3 fasting acyl-carnitine elevations
- Acyl-carnitine abnormalities were confirmed in 48%
- Corrected prevalence of 17% of ASD children screened.

Citation: Transl Psychiatry (2016) 6, e927; doi:10.1038/tp.2016.189

Modulation of mitochondrial function by the microbiome metabolite propionic acid in autism and control cell lines

HOENIX

Hospital

BARROW

Neurological Institute

RE Frye^{1,2}, S Rose^{1,2}, J Chacko¹, R Wynne^{1,2}, SC Bennuri^{1,2}, JC Slattery^{1,2}, M Tippett^{1,2}, L Delhey^{1,2}, S Melnyk^{1,2}, SG Kahler^{1,2} and DF MacFabe³

Rose et al. Translational Psychiatry (2018)8:42 DOI 10.1038/s41398-017-0089-z

Translational Psychiatry

ARTICLE

Open Access

Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism

Shannon Rose¹, Sirish C. Bennuri¹, Jakeira E. Davis¹, Rebecca Wynne¹, John C. Slattery¹, Marie Tippett¹, Leanna Delhey¹, Stephan Melnyk¹, Stephen G. Kahler¹, Derrick F. MacFabe² and Richard E. Frye^{1,3}

BARROW Neurological Institute

BARROW Neurological Institute

RESEARCH ARTICLE

Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded case-control study

Shannon Rose¹, Sirish C. Bennuri¹, Katherine F. Murray², Timothy Buie³, Harland Winter², Richard Eugene Frye¹*

 Autism Research Program, Arkansas Children's Research Institute, Little Rock, Arkansas, United States of America, 2 Department of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, Massachusetts, United States of America, 3 Department of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts, United States of America

* REFrye@uams.edu

Examples of Genetic Disorder

Examples of Genetic Disorder

Down Syndrome

Shamim I. Ahmad Editor

Neurodegenerative Diseases

OXIDATIVE STRESS AND MITOCHONDRIAL DYSFUNCTION IN DOWN SYNDROME

Giovanni Pagano* and Giuseppe Castello

CROM, Cancer Research Center, Mercogliano, Italy *Corresponding Author:Giovanni Pagano—Email: gbpagano@tin.it

Table 1. Reported changes in oxidative stress parameters in cells, tissues or body fluids from DS patients

Cells/Tissues/ Body Fluids	Endpoints	References
Foetal Brain	↑ SOD-1; ↔ glutathione peroxidase (GPx); ↑ MDA	5
Brain	↑ reactive carbonyls and carbonyl reductase;	9
Amniotic Fluid	↑↑ Isoprostanes	10
Erythrocytes	\uparrow SOD-1 and GPx; \Leftrightarrow catalase (CAT);	12-16
and Neutrophils	↑↑ ratio SOD-1:(GPx + CAT); ↑ MDA and lipofuscin	
	↑ SOD-1 and GPx; \Leftrightarrow CAT; ↑ MDA	
Leukocytes,	Age-dependent	17-18
Whole Blood	(8-OHdG);	
and Plasma	Age-related ↑↓ GSSG:GSH; ↑ Plasma Glx levels in	
	young patients;	
	↑ Plasma uric acid and ascorbic acid; ↔ Vitamin E	
Plasma	↑ Uric acid and allantoin; ↓ hypoxanthine and xanthine	19
Plasma and	↓ Plasma melatonin and urinary kynurenine;	20
Urine	↑ Urinary kynurenic acid and anthranilic acid	
Plasma	↑ Citrulline: arginine and neopterin in demented patients;	21
	↑ NO production	
Serum	↑ Uric acid	22
Urine	↑ 8-OHdG and MDA	23
Urine	↑ Isoprostane 8,12-iso-iPF2alpha-VI	24 25
Amniotic	Dysregulation of oxidative stress response genes;	25
Fluid (mRNA	phospholipids, ion transport molecules, heart, muscle,	
transcription	structural proteins, and DNA damage repair genes	
profile)		

Table 2. Main mitochondrial anomalies/dysfunctions reported in cells from DS patients or from trisomy 16 mice

BARROW

Neurological Institute

HOENIX HILDREN'S

Hospital

Cells/Organisms	Endpoints	References	
Platelets from DS patients	Monoamine oxidase, cytochrome oxidase and isocitrate dehydrogenase	39	
Trisomy 16 cerebellar neurons	Levels of microtubules, abnormally shaped mitochondria and dense bundles of abnormal filaments	40	
Brain of mouse trisomy 16	↑ O ₂ -· formation; ↓ respiration with the Complex I substrates malate and glutamate but not with the Complex II substrate succinate; ↓ the 20 kDa subunit of Complex I; ↓ pyruvate dehydrogenase levels	41-43	
Astrocyte and neuronal cultures from foetal DS brain	Alterations in the processing of amyloid beta precursor protein (AbetaPP); impaired mitochondrial function in DS astrocytes	44	
Fibroblasts from DS patients	Impaired repair of oxidative damage to mtDNA	45	
Heart of DS fetuses	Oligonucleotide microarrays: downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins	46	
PBMC from DS children	↑ Lucigenin-derived chemiluminescence; $\downarrow \Delta \Psi(m)$	47	

D, Valenti et al. / Neuroscience and Biobehavioral Reviews 46 (2014) 202-217

Genome-wide expression studies in Autism spectrum disorder, Rett syndrome, and Down syndrome

Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy DOWN SYNDROME AUTISM RETT SYNDROME Dysreactive immune process MECP2 mutation and microglial activation Overexpression of TNFα,IL6, Glutamate trisomic genes & others Enhanced intracellular Ca²⁺ spikes Dysregulation of some non-trisomic genes Abnormal energy metabolism and ROS production Prenatally: Postnatally: mitochondrial dysfunction altered cell proliferation and migration and oxidative stress Abnormal synaptic Abnormal neuronal Dendritic wiring functioning damage Functional dysconnection in association cortices Lack of integration in information processing

HOENIX

Hospital

Carla Lintas, Roberto Sacco, Antonio M. Persico*

ILDREN'S

BARROW

Neurological Institute

Neurobiology of Disease 45 (2012) 57-68

Examples of Genetic Disorder

Phelan-McDermid Syndrome

SCIENTIFIC REPORTS Mitochondrial Dysfunction may explain symptom variation in Phelan-McDermid Syndrome

Richard E. Frye¹, Devin Cox², John Slattery¹, Marie Tippett¹, Stephen Kahler¹, Doreen Granpeesheh³, Shirish Damle⁴, Agustin Legido⁴ & Michael J. Goldenthal⁴

BARROW

Neurological Institute

Gene	Position	Enzyme Name and Function	Disease Conditions
ACO2 22q13.2	22-12-2	Mitochondrial aconitase	infantile cerebellar-retinal degeneration
	22415.2	Second enzymes in the tricaboxylic acid cycle	
NDUFA6 22q13.2	22q13.2	 Nicotinamide adenine dinucleotide-ubiquinone oxidoreductase 1 alpha subcomplex 6 	
	• Subunits of electron transport chain complex I ⁵		
TRMU 22q13.31	I'RMU 22q13.31	• Transfer ribonucleic acid 5-methlaminomethyl- 2-thiouridylate methyltransferase	• Aminoglycoside-induced and nonsyndromic deafness ⁷
		 Modification of mitochondrial transfer ribonucleic acid⁶ 	Acute infantile liver failure ⁸
		Homolog of S. Cerevisiae	• Fatal infantile cardioencephalomyopathy ⁹⁻¹³
SCO2 22q13.33	22q13.33	Assembly of electron transport chain complex IV ⁹	Spontaneous abortion ¹²
	Cytochrome c oxidase deficiency ¹⁰	• Autism ¹⁴	
TYMP 22q13.33	22-12.22	Thymidine phosphorylase	Mitochondrial deoxyribonucleic acid depletion syndrome-1
	22q15.55	Deoxynucleotide metabolism ¹⁵	$\bullet\ Mitochondrial\ neurogastrointestinal\ encephalopathy^{10,16}$
CPT1B 2	22q13.33	Mitochondrial carnitine palmitoyltransferase	• Heterozygous deletions can result in embryonic death or fatality after cold-challenge in mice ¹⁸
		• Transports long-chain fatty acyl-CoA from the cytoplasm into the mitochondrial ¹⁷	

SCIENTIFIC REPORTS

Mitochondrial Dysfunction may explain symptom variation in Phelan-McDermid Syndrome

PHOENIX

Hosnital

HILDREN'S

BARROW

Neurological Institute

Richard E. Frye¹, Devin Cox², John Slattery¹, Marie Tippett¹, Stephen Kahler¹, Doreen Granpeesheh³, Shirish Damle⁴, Agustin Legido⁴ & Michael J. Goldenthal⁴

SCIENTIFIC REPORTS Mitochondrial Dysfunction may explain symptom variation in Phelan-McDermid Syndrome

Richard E. Frye¹, Devin Cox², John Slattery¹, Marie Tippett¹, Stephen Kahler¹, Doreen Granpeesheh³, Shirish Damle⁴, Agustin Legido⁴ & Michael J. Goldenthal⁴

BARROW

Neurological Institute

	Complex I Underactivity	Complex I Overactivity
Development		
ASD	44% (4/9)	75% (3/4)
Regression	63% (5/8)	100% (4/4)
Loss of Language	80% (4/5)	75% (3/4)
Loss of Social Skills	40% (2/5)	100% (4/4)
Loss of Gross Motor Skills	60% (3/5)	0% (0/4)
Loss of Fine Motor Skills	80% (4/5)	25% (1/4)
Proximal Trigger	80% (4/5)	0% (0/4)
ASD Regression Typical Age	20% (1/5)	75% (3/4)
Mean (SD) Age at Regression	63 m (29 m)	27 m (16 m)
Multiple Regressions	60% (3/5)	25% (1/4)

Examples of Genetic Disorder

WDR45

De novo mutations in the autophagy gene *WDR45* cause static encephalopathy of childhood with neurodegeneration in adulthood

Ρηοενιχ

Hospital

BARROW

Neurological Institute

Mitochondrial Dysfunction

Potential Treatments

Table 3. Agents commonly used to treat PMD and SMD

Vitamin	Dose	Adverse effects	Function
Electron transport chain support			
CoQ10 (reduced): ubiquinol CoQ10 (oxidized): ubiquinone	5–30 mg/kg/day, 1–2×/day 10–30 mg/kg/day, 1–2×/day	appetite loss, nausea, diarrhea at high doses	energy carrier between complex I and III, and complex II and III
Electron carrier support			
Niacin (B ₃)	50–100 mg given daily	flushing reaction	nicotinamide adenine dinucleotide (NAD) precursor
Riboflavin (B ₂)	100–400 mg given daily	nausea at high doses	flavin adenine dinucleotide (FAD) precursor
Energy Storage			
Creatine monohydrate	100 mg/kg/day; 1–2×/day	increased urination	high-energy phosphate buffer precursor to phosphocreatine
Fatty acid oxidation support			
L-carnitine or acetyl-L-carnitine Biotin (B ₇)	30–120 mg/kg/day, 1–2×/day 5–10 mg/day given daily	stool loose/fishy smell none	carrier of long-chain fatty acids cofactor for carboxylase enzymes
Mitochondrial enzyme cofactors			
Thiamine (B ₁)	50–100 mg given daily	none	cofactor for citric acid cycle enzymes
Pantothenic acid (B ₅)	5–1,200 mg/day, 1–3×/day	diarrhea at high doses	precursor to coenzyme A
Pyridoxine (B ₆)	200 mg given daily	headache, paresthesia, nausea, headache at high doses	cofactor for over 100 enzymes
Biotin (B7)	as above	none	cofactor for carboxylase enzymes
Alpha-lipoic acid	50–200 mg given daily	headache, paresthesia, rash, muscle cramps	cofactor for citric acid cycle enzymes
Antioxidants			
CoQ10	as above	as above	targets ETC oxidative stress
L-carnitine	as above	as above	scavenger of organic acids
Vitamin E	200–400 IU given daily	bleeding at high doses	protects cell membranes
Vitamin C	100–500 mg given daily	diarrhea at high doses	protects iron and copper
Redox metabolism support			
Methylcobalamin (B ₁₂)	5–2,000 μg every 1–3 days	hyperactivity, sleep disruption	supports methylation and folate cycles, an glutathione production
Reduced folate (B ₉)	folinic acid 400–800 μg/day	none	supports methylation and folate cycles
N-acetyl-L-cysteine (NAC)	10–70 mg/kg/day, 1–3×/day	diarrhea at high doses	precursor to glutathione
Zinc	10–40 mg daily	suppresses iron and copper absorption	supports superoxide dismutase
Central folate support			
Folinic acid/leucovorin calcium (B ₉)	0.5–4 mg/kg/day, 1–3×/day	hyperactivity	supports adequate folate levels in the brain

Journal of *Clinical Medicine*

Leanna M. Delhey ^{1,2}, Ekim Nur Kilinc ¹, Li Yin ³, John C. Slattery ^{1,2}, Marie L. Tippett ^{1,2}, Shannon Rose ^{1,2}, Sirish C. Bennuri ^{1,2}, Stephen G. Kahler ^{1,2}, Shirish Damle ⁴, Agustin Legido ⁴, Michael J. Goldenthal ⁴ and Richard E. Frye ^{1,2,*}

Table 3. Means (Standard Error) of Normalized Complex I activity on and off supplements by Mitochondrial Disease group. Supplements that are confirmed to be significant in the stepwise regression are bolded and italicized.

Supplement –	No Mitochondrial Disease		Mitochondrial Disease	
	Off Supplement	On Supplement	Off Supplement	On Supplement
<i>Fatty Acids</i> Folate	0.1 (0.20) 0.2 (0.21)	1.2 (0.48) 0.7 (0.5)	-0.3 (0.47) -0.3 (0.49)	3.1 (0.84) 2.7 (0.79)

Journal of *Clinical Medicine*

Leanna M. Delhey ^{1,2}, Ekim Nur Kilinc ¹, Li Yin ³, John C. Slattery ^{1,2}, Marie L. Tippett ^{1,2}, Shannon Rose ^{1,2}, Sirish C. Bennuri ^{1,2}, Stephen G. Kahler ^{1,2}, Shirish Damle ⁴, Agustin Legido ⁴, Michael J. Goldenthal ⁴ and Richard E. Frye ^{1,2,*}

Table 4. Means (Standard Error) of Normalized Citrate Synthase activity on and off supplements by Mitochondrial Disease group. Supplements that are confirmed to be significant in the stepwise regression are bolded and italicized.

Supplement –	No Mitochondrial Disease		Mitochondrial Disease		
	Off Supplement	On Supplement	Off Supplement	On Supplement	
Fatty Acids	0.8 (0.17)	1.2 (0.40)	0.3 (0.40)	2.6 (0.70)	
Folate	0.9 (0.18)	0.8 (0.40)	0.2 (0.42)	2.4 (0.66)	
Antioxidants	0.9 (0.17)	0.8 (0.42)	0.2 (0.41)	2.7 (0.71)	

BARROW

Neurological Institute

Journal of *Clinical Medicine*

Leanna M. Delhey ^{1,2}, Ekim Nur Kilinc ¹, Li Yin ³, John C. Slattery ^{1,2}, Marie L. Tippett ^{1,2}, Shannon Rose ^{1,2}, Sirish C. Bennuri ^{1,2}, Stephen G. Kahler ^{1,2}, Shirish Damle ⁴, Agustin Legido ⁴, Michael J. Goldenthal ⁴ and Richard E. Frye ^{1,2,*}

Figure 1. The relationship between Normalized Complex I and IV activity. Folate supplementation is associated with a significantly greater slope in the relationship between complex activities.

BARROW

Neurological Institute

Leanna M. Delhey ^{1,2}, Ekim Nur Kilinc ¹, Li Yin ³, John C. Slattery ^{1,2}, Marie L. Tippett ^{1,2}, Shannon Rose ^{1,2}, Sirish C. Bennuri ^{1,2}, Stephen G. Kahler ^{1,2}, Shirish Damle ⁴, Agustin Legido ⁴, Michael J. Goldenthal ⁴ and Richard E. Frye ^{1,2,*}

Mitochondrial Dysfunction in Autism

Journal of

Clinical Medicine

Figure 2. The relationship between normalized Complex I and Citrate Synthase activity. (**a**) Folate and (**b**) B12 supplementation are associated with a significantly greater slope in the relationship between Complex I and Citrate Synthase.

Effect of a Combination of Carnitine, Coenzyme Q10 and Alpha-Lipoic Acid (MitoCocktail) on Mitochondrial Function and Neurobehavioral Performance in Children with Autism Spectrum Disorder

BARROW

Neurological Institute

Legido A, Goldenthal MJ, Garvin B, Damle S, Corrigan K, Connell J, Thao D, Valencia I, Melvin J, Khurana D, Grant M, Newschaffer CJ

Objective: To determine if patients with ASD and mt dysfunction would improve clinically and/or biochemically on a combination of carnitine, coenzyme Q10 and alpha-lipoic acid *(MitoCocktail)* in an open-label pilot trial with a baseline-treatment-baseline design.

Results: Mean buccal complex I/IV activity ratio was significantly (p<0.02) reduced during *MitoCocktail* treatment compared to baseline. All subjects showed at least one specific sign of metabolic improvement, which waned 3 months post-treatment in 7 of the 11 participants. Of the 11 total or subscale scores considered, all showed change in means from Time 1 to Time 2. Statistically significant changes were observed for the Unusual Behavior subscale from the ASRS (p<0.006), the Lethargy subscale from the ABC (p<0.01), and the Inappropriate Speech subscale from the ABC (p<0.02). From Time 2 to Time 3, scores worsened on each of these three subscales with statistically significant changes on Lethargy (p<0.01) and Inappropriate Speech subscales (p<0.007).

Adams et al. BMC Pediatrics 2011, 11:111 http://www.biomedcentral.com/1471-2431/11/111

RESEARCH ARTICLE

Effect of a vitamin/mineral supplement on children and adults with autism

James B Adams^{1*}, Tapan Audhya², Sharon McDonough-Means³, Robert A Rubin⁴, David Quig⁵, Elizabeth Geis¹, Eva Gehn¹, Melissa Loresto¹, Jessica Mitchell⁶, Sharon Atwood¹, Suzanne Barnhouse¹ and Wondra Lee¹

BARROW

Neurological Institute

PHOENIX CHILDREN'S

Hosvital

Clinical Nutrition 34 (2015) 783-784

Green tea EGCG plus fish oil omega-3 dietary supplements rescue mitochondrial dysfunctions and are safe in a Down's syndrome child

BARROW

Neurological Institute

		EGCG/fish oil diet supplementation		
	Basal	1 month	3 months	6 months
Creatinine (ref 0.6-1.3 mg/dL)	0.69	0.66	0.69	0.65
GOT/AST (ref. 0-35 U/L)	23	27	26	30
GPT/ALT (ref. 0-45 U/L)	21	21	26	35
Total Cholesterol (ref. < 200 mg/dL)	166	162	172	165
HDL Cholesterol (ref. 30-75 mg/dL)	64	65	62	70
LDL Cholesterol (ref. < 150 mg/dL)	87	83	92	79
Friglycerides (ref. 40-160 mg/dL)	74	72	91	80
Folic acid (ref 3-20 ng/mL)	3.01	1.90	18.40*	6.20**
FT3 (eu. 2.75-7.80 nmol/L)	5.36	5.46	6.25	7.90
FT4 (eu. 10.2-22.7 pmol/L)	13.9	14.3	13.8	16.1
FSH (eu. 0.40-4.00 uU/mL)	6.26	6.63	5.82	3.57
Thyroglobulin (ref 0-78 ng/mL)	112.70	44.8	37	57
Ab anti- I'hyroglobulin Neg. < 18.00 Ul/mL)	19.00	17.1	9.4	5.9
Ab anti-TPO Neg. < 28.0 UI/mL) 'supplementation of 1 c ** supplementation of 1	18.6	25	20.7	16

D. Valenti et al. / Neuroscience and Biobehavioral Reviews 46 (2014) 202-217

Treatments for biomedical abnormalities associated with autism spectrum disorder

Richard Eugene Frye¹* and Daniel A. Rossignol²

PHOENIX

Hospital

HILDREN'S

Department of Pediatrics, Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA ² Rossignol Medical Center, Irvine, CA, USA

Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes

Richard E. Frye^{1,2} and Daniel A. Rossignol³

Iosnital

BARROW

Neurological Institute

¹Arkansas Children's Research Institute, Little Rock, AR, USA. ²Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. ³Rossignol Medical Center, Irvine CA, USA.

ABSTRACT: Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these

KEYWORDS: autism spectrum disorders, carnitine, cobalamin, epilepsy, folate, genetic disorders, mitochondrial dysfunction, review

