

Genetic Testing:

Genome Sequencing A-Z for Mitochondrial Disease

Christine Stanley PhD, FACMG

MitoAction Mito Monthly Expert Series December 6, 2019



## Overview

DNA sequencing for mitochondrial disease Genome sequencing for mitochondrial disease Clinical case examples



## Background



#### Mitochondria are the "energy factories" of our cells and organs





Mitochondrial disease happens when the mitochondria stop working



#### Organs requiring large amounts of energy are usually affected



But others can also be affected: kidneys, eyes, liver, pancreas, etc.

Mitochondrial disease is typically considered if 3 or more organs are affected



### Mitochondrial disease is suspected when...

...more than one of the energy demanding organs are affected and result in the following clinical symptoms:

- Developmental delay with other organ involvement
- Cardiomyopathy
- High levels of lactic acid
- Opthalmoplegia or ptosis
- Hearing loss
- Severe gastrointestinal dysmotility
- Severe developmental regression with other illness



However, some symptoms can be associated with many different disorders, not necessarily mitochondrial disease

- Failure to thrive
- Short stature
- Developmental delay
- Poor muscle tone (hypotonia) and muscle myopathy



### Inheritance of Mitochondrial disease

•Mitochondrial genome changes come from the mother (or arise new)

•Nuclear genome changes come from either or both parents (or arise new)



## DNA sequencing for mitochondrial disease







What is sequencing?

The process of reading the letters of an individual's DNA





### Where is DNA located?

DNA is located in both in the Mitochondria and Nucleus of a cell and both are important to diagnose mitochondrial disease



CELL

variant**vx** 

Genes code for proteins needed for the body to function

#### BENEFITS OF GENETIC TESTING

- PROVIDES AN ANSWER
- ENDS DIAGNOSTIC TESTING
- GUIDES TREATMENT
- INFORMS ON AGENTS TO AVOID
- EMPOWERS CONNECTIONS
- PROVIDES OPTIONS



#### ADDED BENEFITS OF GENOMIC TESTING

#### More comprehensive (detects more variant types)

- Sequence variants in exons
- Structural variants
- Repeat variants
- Mitochondrial variants
- Intronic variants between exons

#### One and done

- Reevaluation can be performed in silico, no need for repeat blood draws
- One turn-around-time rather than sequential or reflexive testing with long cumulative TATs

#### Reusable

- Pre-symptomatic (cancer)
- Carrier (reproductive risk)
- PGx (drug treatments effectiveness)



# Genome sequencing for mitochondrial disease











Panels and other tests



#### Panels, exomes and genomes



They all begin with fragmented genomic DNA



#### PANELS/EXOMES REQUIRE EXON CAPTURE, GENOMES DO NOT





#### Variants Identified by the Genome-based Exomes

- Single Nucleotide Variants (SNVs) for nuclear and mitochondrial genes
- Short Tandem Repeats (STRs)\*\*
- Structural Variants (SVs)\*\*
  - -Small insertions/deletions <50bp indels/delins
  - -Small deletions/duplications (50bp-200bp)\* typical blind spot
  - -Mid-size Deletions/Duplications (200-1,000) exon level \*typical blind spot
  - -Large Deletions/Duplication (1,000-100,000) gene level
  - -Very large Deletions/Duplications (100kb-3Mb)
  - -Gross Structural Variants (>3Mb)

\*\*Using specialized software



## **Clinical cases**



## CASE 1



- 51 year old woman
- Poor muscle fitness, exercise-induced muscle weakness and myalgia
- Mild dysphagia and choking tendency
- In her 40s, developed ptosis in right eye which was operated on at age 47
- At 49 years, psoriatic skin rash developed
- Clinical neurological exam is normal
- Blood lactate levels are normal
- Muscle histology shows ragged red fibers and COX-negative fibers



#### Causative variant: m.15933G > A

This is a homoplasmic variant in the MT-TT gene which codes for Threonine transfer RNA (tRNA Thr) that is required to correctly build proteins





## CASE 2



- 25 year old woman
- Dysexecutive syndrome
- Muscle fatigue
- Continuous headache
- Experienced infection-triggered Addison crisis. As progressed, experienced two epileptic seizures and stroke-like episodes with hemiparesis on the right side
- Cerebral MRI showed a substance defect of the parieto-occipital left side exceeding the vascular territories with a lactate peak
- Positive lactic ischemia test
- Muscle biopsy showed single cytochrome c oxidase-negative muscle
- Comorbid autoimmune polyglandular syndrome type 2 with Hashimoto's thyroiditis, Addison's disease, and autoimmune gastritis consistent with increased antibodies



#### Causative variant: m.12015T>C

This is a heteroplasmic variant in the MT-ND4 gene which codes for a component of the respiratory chain Complex I that generates energy for cells





#### Take Home Message

• These are both "classic" cases of mitochondrial disease caused by a variant in the mitochondrial genome



## CASE 3



- 5 year old girl
- Bilateral club foot, mild facial dysmorphism including macrodontia of the upper central incisors and retrognathia
- Developmental delay
- Truncal hypotonia with brisk extremity reflexes
- Dysarthric and slow speech
- Mitochondrial disease was considered the clinical constellation of failure to thrive, hypotonia, dysarthria, and tremor
- Abnormal biochemical results: elevated plasma lactate, persistent metabolic acidosis, intermittent plasma alanine elevation, elevated urine organic acids



#### Causative variant: c.1255C>T

This is a heterozygous variant in the nuclear FARS2 gene which codes for an enzyme that regulates mitochondrial Phenylalanine transfer RNA (tRNA Phe). It was inherited from the patient's father.

#### Causative variant: 116kb deletion

This is a heterozygous deletion in the same FARS2 gene that removes exon 6 as well as parts of intron 5 and intron 6. It was inherited from the patient's mother.

The two FARS2 variants are compound heterozygous and together impact the function of the enzyme.



#### Take Home Message

- The causal variants would not have been identified if only the mitochondrial genome was considered
- Two different tests were needed to identify the two different types of variants if performing traditional testing
- If whole genome sequencing had been used, the variants would have been identified by a single test



## CASE 4



- 24 year old woman
- Presented with clinical symptoms of MELAS from age 15 onwards, including
  - -Stroke like episodes
  - -Seizures
  - -High lactate levels
- Genetic testing identified m.1630A>G variant which could be consistent with MELAS, however her mother also carries the variant at higher heteroplasmy (93% vs 75% in blood) and is asymptomatic
- Mild ataxia and unsteady gait
- Occasional headaches and tinnitus
- Normal truncal tone with mild bilateral weakness in the upper and lower extremities in proximal and distal muscles
- Positive tremor that worsens with movement, otherwise normal fine motor skills



#### Case 4 continued

- Positive ankle clonus and mild contracture to the lower right extremity
- Loss of peripheral vision, decreased upgaze, nystagmus on extreme right gaze
- Speech articulation problems
- Underwent kidney transplant for chronic renal failure



#### Causative variant: c.1000C>T

This is a heterozygous variant in the nuclear VARS2 gene which codes for an enzyme that regulates mitochondrial Valine transfer RNA (tRNA Val)

#### Causative variant: m.1630A > G

This is a variant in the mitochondrial MT-TV gene which codes for Valine transfer RNA (tRNA Val)

Reduced function of VARS2 due to the nuclear variant exacerbates the effect of the mitochondrial MT-TV variant, which causes the patient's symptoms.



#### Take Home Message

- Analyzing the mitochondrial gene alone was not sufficient to explain the patient's symptoms, given that her mother carried the same mitochondrial variant
- The connection between the nuclear and mitochondrial variants could not have been identified by exome analysis only, additional analysis of the mitochondrial genome was required



## Summary and Conclusions



## Mitochondrial Disease Summary

- Mitochondrial disease is very challenging to diagnose
- Mitochondrial disease is caused by changes in either the mitochondrial DNA or the nuclear DNA or BOTH
- Genetic testing is the recommended first step in diagnosis and comprehensive genomic testing the shortest path to a diagnosis
- Genomic testing can also identify a cause that is not mitochondrial in nature but has overlapping clinical symptoms
- Genomic testing can identify more than one disorder in an individual



### Ordering testing

- · Legally your physician is the only one who can order genetic testing
- Your physician will review a consent form with you and you will both sign the test requisition form
- Your insurance company may or may not cover genetic testing and therefore you will need preauthorization
- If your result is negative or inconclusive, you may request a repeat analysis of the data, usually in a year.
- You can receive copies of your results from the ordering clinician, but you also have the right to receive your test results directly from the diagnostic lab upon request
- If you order testing from another lab ask them if they can detect all variant types including deletions/duplications and short tandem repeats and if they sequence both the mitochondrial and nuclear genomes



#### Thanks for listening!

Interested in learning more about whole genome sequencing and its role in diagnosis of mitochondrial disease?

Read the information on our website at <u>www.variantyx.com/mitochondrial-</u> <u>analysis/</u>.

Or contact us at info@variantyx.com

Have you been diagnosed with a large mitochondrial deletion? Variantyx is recruiting patients like you for whole genome sequencing. Contact us.

