

bringing energy to life

MELAS SPECTRUM DISORDERS AND SONLICROMANOL PROGRESS UPDATE

Prof. Dr. Jan Smeitink, CEO – MITOACTION webinar – March 2022

bringing energy to life

This presentation contains forward-looking statements. All statements, other than statements of historical facts, contained in this document, including statements regarding our strategy, future operations, future financial position, future revenues, projected costs, prospects, plans and objectives of management, are forward-looking statements. The words "anticipate," "believe," "estimate," "expect," "intend," "may," "plan," "predict," "project," "target," "potential," "will," "would," "could," "should," "continue," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Any forward-looking statements represent our views only as of today and should not be relied upon as representing our views as of any subsequent date. If underlying assumptions prove inaccurate or known or unknown risks or uncertainties materialize, actual results could vary materially from the expectations and projections of Khondrion. Risks and uncertainties include but are not limited to challenges and uncertainties inherent in product development, including the uncertainties of clinical success and the timeline for the availability of sonlicromanol [KH176]. While we may elect to update these forward-looking statements at some point in the future, we specifically disclaim any obligation to do so, even if our views change.

- 1. THE COMPANY
- 2. PRIMARY MITOCHONDRIAL DISEASES
- 3. MELAS SPECTRUM DISORDERS
 - PHENOTYPES
 - CAUSE AND CELLULAR CONSEQUENCES
- 4. MITOCHONDRIAL DISEASE SMALL MOLECULE DRUG DEVELOPMENT
- 5. CLINICAL TRIALS UPDATE

Headquartered

- Founded
- Focus

: Nijmegen, The Netherlands

: 2012

: Primary Mitochondrial Diseases

PRIMARY MITOCHONDRIAL DISEASES

Hampered mitochondrial OXPHOS system due to nuclear DNA or mitochondrial DNA mutations Prevalence of 1 in 5,000 live births

- Rare, debilitating diseases
- Children and Adults
- Any organ, any mode of inheritance
- Great variety in clinical phenotypes
- High unmet medical need

bringing energy to life

Mutations in over 200 genes known all converting to the OXPHOS system to cause Primary Mitochondrial Disease

Common consequences:

Reductive distress - disturbed redox balance

Oxidative distress – Ferroptosis due to ROS-induced lipid peroxidation

Inflammation due to increased PGE2

MELAS SPECTRUM DISORDERS

Estimated patient number (prevalence) in EU, US and Japan: 50,000

Pavlakis et al., 1984; Verhaak et al; Orphanet J Rare Dis, 2016; Gorman et al., Nature Review Disease Primers 2016

MT-TL1 MUTATION

PROTEINS

Nature Reviews | Genetics

MELAS SPECTRUM DISORDERS: PHENOTYPES

The majority of patients with the m.3243A>G mutation do not have classical MELAS

RCMM Natural History Study

NEWCASTLE MITOCHONDRIAL DISEASE ADULT SCALE

Frequent involvement of Nervous System (\bullet) and Muscle (\bullet)

All scores on the NMDAS scale are shown. In order of prevalence per subsection

RCMM Natural History Study

NMDAS NATURAL HISTORY: FOLLOW-UP DATA

The relation between Newcastle Mitochondrial Disease Adult Scale (NMDAS) and age is indicated. Age is in years.

RCMM Natural History Study

The overall progression in NMDAS score was 0.47 (95% CI 0.33 to 0.61) points per year, but there were large differences between the MELAS spectrum phenotypes:

1. Patients with classical MELAS had a progression of **1.31** (95% CI –0.78 to 3.40) points per year. Due to the small groups of patients with MELAS (n=7), however, the CI was wide and included the null value.

2. Patients with MIDD showed an increase of **0.64** (95% CI 0.43 to 0.85) points per year

3. The Mixed Phenotype group showed an increase of **0.26** (95% CI 0.13 to 0.40) points per year.

MT-TL1 3243A>G : DISEASE EXPRESSION AND SEVERITY

What factors/circumstances influence disease expression and severity?

MT-TL1 3243A>G : DISEASE EXPRESSION AND SEVERITY

Isolated [CI] or combined OXPHOS complex [CI plus other]enzyme deficiency

FACTORS RELATED TO EXPRESSION AND SEVERITY OF OXPHOS DEFICIENCY AND ITS CONSEQUENCES :

- 1. Organ and tissue seggregation and genetic bottleneck
- 2. Level of heteroplasmy
- 3. mtDNA copy number
- 4. Posttranslational modifications
- 5. Nuclear genetic determinants
- 6. Environmental factors
- 7. Age

1. ORGAN AND TISSUE SEGGREGATION AND GENETIC BOTTLENECK

Mitochondrial DNA heteroplasmy levels can change during life through:

- A. Relaxed replication (continuously, cell-cycle independent) in nondividing and dividing cells.
- B. Vegetative segregation in dividing cells where mtDNAs are particled during cell division.

In non- dividing (postmitotic) cells, relaxed replication during life can lead to an increase in the proportion of mutant mtDNA, which if it exceeds a critical threshold leads to a biochemical defect of oxidative phosphorylation.

The **germline genetic bottleneck** accelerates segregation between the generations, leading to major changes in the heteroplasmy level.

Heteroplasmy can also be introduced through somatic and germline **de novo** mutations.

2. HETEROPLASMY: two [or more] mtDNA variants (wild-type and mutant type) exist within the same cell

Nature Reviews | Genetics

3. MITOCHONDRIAL DNA COPY NUMBER: The number of mitochondrial genomes per cell

- More mitochondria per cell

- More copies of mtDNA per mitochondrion per cell

Example: Low mtDNA copy number in skeletal muscle of m.3243A>G patients is positively associated with disease burden

4. POSTTRANSLATIONAL MODIFICATIONS

Taurine modification is indispensable for mitochondrial translation providing the 13 subunits of the OXPHOS system

The m.3243A>G mutation leads to a disappearance of the 5taurinemethyluridine for which taurine is the donor.

Induces impaired OXPHOS protein synthesis and/or activity

5. OTHER

a. Nuclear genetic determinants

- b. Environmental factors
- c. Age

COMMON CELLULAR CONSEQUENCES OF HAMPERED OXPHOS

Mutations in MT-TL1 gene convert to the OXPHOS system to cause Primary Mitochondrial Disease

Common cellular consequences suitable for drug development:

Reductive distress - disturbed redox balance

Oxidative distress – Ferroptosis due to ROS-induced lipid peroxidation

Inflammation due to increased PGE2 levels

COMPLEX I DEFICIENCY: REDUCTIVE AND OXIDATIVE DISTRESS

Cell line	Mutation	CI	ммр	NAD(P)H	ER _{ca}	[Ca] _c peak	[Ca] _M peak	[ATP] _M peak	t _{1/2}	Et	CM- DCF	F	Nc	F/Nc
CT1 (#5120)		113	100	100	100	100	100	100	100	100	100	100	100	100
CT2 (#5119)		105	99	86	105	104	96	101	95	102	100	99	97	102
CT3 (#5118)		103	99	109	105	100	103	110	95	98	125	105	95	111
CT4 [#4996]		n.d.	99	n.d.	n.d.	n.d.	n.d.	n.d	n.d.	100	n.d.	n.d.	n.d.	n.d.
CT5 (MW26)		152	n.d.	n.d.	n.d.	n.d.	n.d.	97	n.d	100	n.d.	n.d.	n.d.	n.d.
CT6 (MW28)		97	n.d.	n.d.	n.d.	n.d.	n.d.	98	n.d	n.d.	n.d.	95	105	91
CT7 (MW33)		220	n.d.	n.d.	n.d.	n.d.	n.d.	101	n.d	99	n.d.	n.d.	n.d.	n.d.
P1 (#6173)		31	92	142	82	91	86	77	136	176	171	76	116	66
P2 (#4605)		40	n.d.	n.d.	n.d	93	n.d.	72	130	218	n.d.	84	149	56
P3 (#5067)		36	93	191	94	101	87	78	142	264	351	85	137	62
P4 (#5170)		39	98	140	95	97	95	102	102	205	169	65	95	68
P5 (#7276)		26	n.d.	n.d.	82	91	87	60	146	191	244	68	145	47
P6 (#4608)		75	87	130	96	108	97	97	110	195	289	123	103	119
P7 (#4827)		58	n.d.	n.d.	n.d.	82	n.d.	33	169	196	n.d.	96	177	54
P8 (#5260)		36	93	132	77	84	79	48	160	174	187	104	146	71
P9 (#5737)		53	95	127	87	93	96	86	126	131	202	91	88	103
P10 (#5077)		59	n.d.	n.d.	n.d.	n.d	n.d.	n.d.	n.d.	142	n.d.	98	91	108
P11 (#5175)		68	90	112	73	80	76	57	164	151	212	117	98	119
P12 (#6603)		18	88	170	85	91	89	74	134	222	275	120	167	71
P13 (#5199)		69	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	99	112	88
P14 (#5866)		64	94	142	87	90	86	67	140	110	135	114	98	116
P15 (#5171)		73	91	130	96	96	99	93	112	186	242	133	107	125

Distelmaier et al., Brain 2009

Normal network Negative membrane potential

"Fragmented" network Less negative membrane potential

www.khondrion.com

bringing energy to life

CELLULAR TARGET BASED COMPOUND OPTIMIZATION

OXPHOS DEFICIENT

> 250 NCE HIT

 KHONDRION
 bringing energy to life
 SONLICROMANOL SHOWS ANTI-INFLAMMATORY PROPERTIES

COMPLEX I DEFICIENT OXIDATIVE DISTRESS MARKERS NORMALIZED BY SONLICROMANOL

Sonlicromanol is well tolerated and has a pharmacokinetic profile supportive for a twice daily 100 mg b.i.d. oral dosing and a favorable safety profile

KHONDRION bringing energy to life

 $\overline{\mathbb{X}}$

Robustly designed Phase 2b study ongoing with read-out in Q3 2022

Reconfirm and expand on positive Phase 2a results; supplemented by long-term extension study data

Phase 2a – KHENERGY proof of concept trial	Phase 2b – KHENERGYZE trial	Open label extension of Phase 2b – KHENEREXT trial					
Single centerNijmegen (NL)	 Multi-center Nijmegen (NL), Munich (GER), Newcastle upon Tyne (UK); Copenhagen (DK) 	 Multi-center All sites participating in the KHENERGYZE trial 					
 Randomized, double blind, placebo- controlled 100mg, twice daily 	 Randomized, double blind, placebo-controlled Dose-finding – 50mg and 100mg, twice daily 	• Open label					
 18 adults m.3243A>G mutation – responsible for MELAS spectrum disorders 	 27 adults m.3243A>G mutation – responsible for MELAS spectrum disorders Added cognition-related patient inclusion test 	Roll-over patients from Phase 2b					
 4 weeks Outcome measures assessed after 28 days	 4 weeks Outcome measures assessed after 28 days 	 12 months Outcome measures assessed every 3 months 					
 Sonlicromanol well tolerated and safe Multiple parameters tested in exploratory study Significant positive effects on several cognition-related parameters (alertness and mood) 	 Confirm good safety profile and positive effects in various cognitive domains using additional, broadly validated (computerized) tests often used in CNS studies Primary endpoint: "Visual identification test" developed by Cogstate to measure attention In addition, measure parameters in other domains Including hearing, migraine and fatigue 	 Establish longer term safety profile Gather additional longer-term patient data across all Phase 2b outcome measures Assess complementary clinical outcome measures including several motor-function related parameters 					

- Reconfirming Ph2a findings in larger patient pool
- Managing patient heterogeneity with inclusion criteria
- Adding previously unstudied outcome parameters
- teria Generating additional relevant patient data on ations a rolling basis in long-term extension study
- Adding cognition endpoints validated in CNS indications

Creating valuable data package to optimize the Phase 3 study design and further support discussions with regulators

KHÓNJZION

Take home messages

Sonlicromanol

Extensive Research Program

Phase 2a trial m.3243A>G

•Sonlicromanol showed statistically significant improvement in the cognitive domain of attention) and improvement in mood parameters

•Based on MELAS spectrum patient testimonials cognitive decline seriously affects their quality of daily life. The most affected cognitive domains being perceptual, motor function, executive function and complex attention

Phase 2b trial m.3243A>G

•A multi-center dose-finding Phase 2b study with the cognitive domain of attention as primary outcome measure and other cognitive domains as secondary outcome measures is nearing completion

Phase 2b continued 1-year open label extension study m.3243A>G

•First patients included in the one-year open label extension study to explore maintenance of effects seen, to evaluate longer-term safety and to study the effects on parameters requiring longer-term intervention (ongoing)

Phase 1 and 2 Children with PMD

•Adult equivalent doses in age ranges 5-17 years determined. First patients randomized in the phase 2 part of the clinical trial

bringing energy to life

Thank You

www.khondrion.com