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“The Metabolism, Infection and Immunity 

(MINI) Section aims to define the risk factors 

and mechanisms involved in infection-

related clinical decline in children with 

mitochondrial disease.”

MINI Section Mission



NIH MINI Study: Metabolism, Infection 
and Immunity (NCT01780168)

• Natural history study of infection 

and immunity in children with MD

! Infection history

! Immune function

! Disability



Viral infection and 
mitochondrial disease 
(MtD)

• Up to 80% of children with MtD experience 

recurrent infections, mostly respiratory. 
(Tarasenko et al., 2017)

• May cause metabolic decompensation

• Intercurrent infection is a leading cause of 

episodic neurodegeneration in MtD. (Edmonds et 

al., 2002) 
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• Intercurrent viral infection is a 

leading cause of                                

metabolic decompensation in 

MtD patients
• Life-threatening 

bioenergetic/organ failure

• Such systemic perturbations 

exacerbate                             

disease progression

MtD and infection

Tarasenko TN et al. (2017) Mol Genet Metab.; Gordon-Lipkin EM et al. (2022) Clin Transl Med.; Jameson et al. (2011) Paediatr Child Health
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Risk factors for adverse outcomes due to infection



Viral exposures via the AntiViral Antibody 
Response Deconvolution Algorithm (Monaco et al., bioRxiv, 2018)

Fam MtD Shared

Virus P-value

Enterovirus B 9/39 (23%) 9/17 (53%) 0.06 5/17 (29%)

Rhinovirus A 12/39 (31%) 9/17 (53%) 0.14 3/17 (18%)

Enterovirus C 3/39 (7.7%) 8/17 (47%) 0.002 4/17 (24%)

Rhinovirus B 7/39 (18%) 5/17 (29%) 0.48 1/17 (5.9%)

Enterovirus A 4/39 (10%) 4/17 (24%) 0.23 2/17 (12%)

Influenza B virus 6/39 (15%) 4/17 (24%) 0.47 1/17 (5.9%)

Respiratory syncytial virus 6/39 (15%) 4/17 (24%) 0.47 3/17 (18%)

Enterovirus D 3/39 (7.7%) 3/17 (18%) 0.35 1/17 (5.9%)

Human mastadenovirus D 0/39 (0.0%) 3/17 (18%) 0.02 3/17 (18%)

SARS related coronavirus 3/39 (7.7%) 3/17 (18%) 0.35 1/17 (5.9%)

Number (%)

Gordon-Lipkin et al., Clin Trans Med, 2022



What are viruses?

• Submicroscopic infectious 
agents

• Infect all life forms

• Needs a living cell to replicate

• Core material of DNA or RNA



How are viruses 

transmitted?

Touch – e.g. SARS-Co-V2

Respiratory droplets – e.g. SARS-Co-V2, 

influenza

Direct contact – e.g. Epstein-Barr virus, human 

papilloma virus

Blood – e.g. HIV, Hepatitis C, Ebola

Contaminated food or water – e.g. Noroviruses

Insects – e.g. Zika (mosquitoes)

Childbirth – e.g. cytomegalovirus



Factors that 
affect virus 
transmission



Seasonality of respiratory viruses
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Percent of Outpatient Visits for Respiratory Illness by Age Group

Reported by the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet)

Weekly National Summary, 2023-24 Influenza Season through the Week Ending January 20, 2024
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Influenza-Associated Pediatric Deaths

by Week of Death, 2020-21 season to 2023-24 season
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Influenza

• RNA virus

• Typed by surface proteins (e.g., H1N1, H3N2)

• Global public health burden
• Pandemics 

• Systemic inflammation → MtD disease exacerbation

• Exacerbates CNS disease in Ndufs4-/- mouse
• ↑Seizures 

Influenza
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Infection 

cycle of 

influenza

Krammer, Nat Rev Immunol (2019)



Do children with MtD get 
“sicker” during viral infection?





• NADH:ubiquinone 

oxidoreductase core subunit S4 

(Ndufs4)

• Homozygotes (Ndufs4-/-) display 

severe phenotype
• Transient alopecia (P16-35)

• Natural death ~P60

• Recapitulate characteristics of 

the human MtD LS

Ndufs4 KO mouse model of LS

Kruse SE et al. (2008) Cell Metab.; Avrutsky MI et al. (2022) Transl Vis Sci Technol.; Stokes JC et al. (2022) JCI Insight.



Influenza A virus (IAV) infection model

Jin Z et al. (2014) Cell Metab.
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IAV-infected Ndufs4 KO mice exhibit 
increased weight loss and lung viral load



Cytokine storm is prominent in IAV-infected 
Ndufs4 KO mice

Yes, Ndufs4 KO mice do 
become “sicker” during viral 
infection



What are the mechanisms of 
enhanced viral load?



Viruses induce metabolic reprogramming in 
infected host cells

• Enhanced glycolytic 
rate in infected cells

• Intrinsic host factor 
for optimal viral 
replication

• Shift host metabolic
intermediates to
nucleotide biosynthesis

What treatment could 
limit viral replication?

Goyal P et al. (2023) Mol Cell Biochem.



DCA treatment abrogates IAV replication 
and cytokine storm in Ndufs4 KO mice

Glucose
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Energy production

TCA

cycle

PDK

PDC

DCA

X

Nucleotide biosynthesis

Lung IAV NS1

+



In vivo summary

Guo et al. (2017) Semin Immunopathol.; Fajgenbaum DC et al. (2020) N Engl J Med.; *Jestin M et al. (2020) Mol Metab.

↑ lung viral load

Metabolic 

decompensation

Cytokine storm
*Lower threshold in MtD



How can ↑glycolysis facilitate 
increased viral load ?



IAV-infected Ndufs4 KO LET1 epithelial cells 
demonstrate increased viral load

• LET1 cell line
• Murine lung epithelial type I

IAV NS1
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Overview of the IAV life cycle

• Viral life cycle
• (1) Attachment

• (2 - 4) Entry/fusion

• (5) Nuclear import

• (6) Transcription

• (7) Replication

• (8 - 10) Virion assembly

• (11) Virion release

Chauhan RP and Gordon ML. (2022) Virus Genes



Overview of the IAV life cycle

• Viral life cycle
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Preliminary data suggests enhanced IAV 
attachment in Ndufs4 KO LET1

• IAV HA binding/attachment
• Occurs within ~10 min

• Nuclear import within ~1 hr

IAV NS1
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Ndufs4 KO LET1 epithelial cells demonstrate 
increased sialylation

• IAV attachment is in large part 

dependent upon α2,3-sialylation 

of cellular glycans

• Increase in SNA lectin binding to 

Ndufs4 KO LET1
• Global sialylation

• Increase in MAA lectin binding 

to Ndufs4 KO LET1
• Specific α2,3-sialylation

WT KO
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In vitro mechanism summary (thus far)

• Enhanced IAV binding/ 

attachment appears to be a 

contributing factor to viral 

infection advantage in Ndufs4 

KO model

• Literature suggests that 

enhanced glycolysis contributes 

to increased viral transcription 

and replication

What if X31 IAV has a 
“compounded” infection 
advantage in Ndufs4 KO?

https://www.nih.gov/news-events/nih-research-matters/sugars-cell-surface-are-key-flu-infections







• Influenza remains a major threat to children with MtD

• Mouse model of Leigh syndrome gets sicker during 
infection

• Lungs from Leigh syndrome mice contains higher viral 
loads

• Respiratory epithelial cells with MtD may be “stickier” for 
influenzas virus (more receptors) 

• Tamiflu can help interupt the viral life cycle and reduce 
morbidity

Summary

41
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